Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(12): 8245-8254, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35638116

RESUMO

Nitrification and biofilm growth within distribution systems remain major issues for drinking water treatment plants utilizing chloramine disinfection. Many chloraminated plants periodically switch to chlorine disinfection for several weeks to mitigate these issues, known as "chlorine burns". The evaluation of disinfection byproduct (DBP) formation during chlorine burns beyond regulated DBPs is scarce. Here, we quantified an extensive suite of 80 regulated and emerging, unregulated DBPs from 10 DBP classes in drinking water from two U.S. drinking water plants during chlorine burn and chloramination treatments. Total organic halogen (TOX), including total organic chlorine, total organic bromine, and total organic iodine, was also quantified, and mammalian cell cytotoxicity of whole water mixtures was assessed in chlorine burn waters for the first time. TOX and most DBPs increased in concentration during chlorine burns, and one emerging DBP, trichloroacetaldehyde, reached 99 µg/L. THMs and HAAs reached concentrations of 249 and 271 µg/L, respectively. Two highly cytotoxic nitrogenous DBP classes, haloacetamides and haloacetonitriles, increased during chlorine burns, reaching up to 14.2 and 19.3 µg/L, respectively. Cytotoxicity did not always increase from chloramine treatment to chlorine burn, but a 100% increase in cytotoxicity was observed for one plant. These data highlight that consumer DBP exposure during chlorine burns can be substantial.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Animais , Cloraminas , Cloro , Desinfecção , Halogenação , Halogênios , Mamíferos , Trialometanos , Poluentes Químicos da Água/toxicidade
2.
Environ Sci Technol ; 56(1): 392-402, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34910457

RESUMO

This study reveals key disinfection byproduct (DBP) toxicity drivers in drinking water across the United States. DBPs, which are ubiquitous in drinking water, form by the reaction of disinfectants, organic matter, bromide, and iodide and are generally present at 100-1000× higher concentrations than other contaminants. DBPs are linked to bladder cancer, miscarriage, and birth defects in human epidemiologic studies, but it is not known as to which DBPs are responsible. We report the most comprehensive investigation of drinking water toxicity to date, with measurements of extracted whole-water mammalian cell chronic cytotoxicity, over 70 regulated and priority unregulated DBPs, and total organic chlorine, bromine, and iodine, revealing a more complete picture of toxicity drivers. A variety of impacted waters were investigated, including those impacted by wastewater, agriculture, and seawater. The results revealed that unregulated haloacetonitriles, particularly dihaloacetonitriles, are important toxicity drivers. In seawater-impacted water treated with chloramine, toxicity was driven by iodinated DBPs, particularly iodoacetic acids. In chlorinated waters, the combined total organic chlorine and bromine was highly and significantly correlated with toxicity (r = 0.94, P < 0.01); in chloraminated waters, total organic iodine was highly and significantly correlated with toxicity (r = 0.80, P < 0.001). These results indicate that haloacetonitriles and iodoacetic acids should be prioritized in future research for potential regulation consideration.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Animais , Cloro , Desinfetantes/toxicidade , Desinfecção , Halogenação , Humanos , Mamíferos , Estados Unidos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Purificação da Água/métodos
3.
J Environ Sci (China) ; 117: 161-172, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35725068

RESUMO

A survey was conducted at eight U.S. drinking water plants, that spanned a wide range of water qualities and treatment/disinfection practices. Plants that treated heavily-wastewater-impacted source waters had lower trihalomethane to dihaloacetonitrile ratios due to the presence of more organic nitrogen and HAN precursors. As the bromide to total organic carbon ratio increased, there was more bromine incorporation into DBPs. This has been shown in other studies for THMs and selected emerging DBPs (HANs), whereas this study examined bromine incorporation for a wider group of emerging DBPs (haloacetaldehydes, halonitromethanes). Moreover, bromine incorporation into the emerging DBPs was, in general, similar to that of the THMs. Epidemiology studies that show an association between adverse health effects and brominated THMs may be due to the formation of brominated emerging DBPs of heath concern. Plants with higher free chlorine contact times before ammonia addition to form chloramines had less iodinated DBP formation in chloraminated distribution systems, where there was more oxidation of the iodide to iodate (a sink for the iodide) by the chlorine. This has been shown in many bench-scale studies (primarily for iodinated THMs), but seldom in full-scale studies (where this study also showed the impact on total organic iodine. Collectively, the THMs, haloacetic acids, and emerging DBPs accounted for a significant portion of the TOCl, TOBr, and TOI; however, ∼50% of the TOCl and TOBr is still unknown. The correlation of the sum of detected DBPs with the TOCl and TOBr suggests that they can be used as reliable surrogates.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Bromo , Cloro , Desinfetantes/análise , Desinfecção , Halogenação , Iodetos , Trialometanos/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA