Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proteins ; 90(1): 186-199, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34369028

RESUMO

To create bacterial transcription "circuits" for biotechnology, one approach is to recombine natural transcription factors, promoters, and operators. Additional novel functions can be engineered from existing transcription factors such as the E. coli AraC transcriptional activator, for which binding to DNA is modulated by binding L-arabinose. Here, we engineered chimeric AraC/XylS transcription activators that recognized ara DNA binding sites and responded to varied effector ligands. The first step, identifying domain boundaries in the natural homologs, was challenging because (i) no full-length, dimeric structures were available and (ii) extremely low sequence identities (≤10%) among homologs precluded traditional assemblies of sequence alignments. Thus, to identify domains, we built and aligned structural models of the natural proteins. The designed chimeric activators were assessed for function, which was then further improved by random mutagenesis. Several mutational variants were identified for an XylS•AraC chimera that responded to benzoate; two enhanced activation to near that of wild-type AraC. For an RhaR•AraC chimera, a variant with five additional substitutions enabled transcriptional activation in response to rhamnose. These five changes were dispersed across the protein structure, and combinatorial experiments testing subsets of substitutions showed significant non-additivity. Combined, the structure modeling and epistasis suggest that the common AraC/XylS structural scaffold is highly interconnected, with complex intra-protein and inter-domain communication pathways enabling allosteric regulation. At the same time, the observed epistasis and the low sequence identities of the natural homologs suggest that the structural scaffold and function of transcriptional regulation are nevertheless highly accommodating of amino acid changes.


Assuntos
Fator de Transcrição AraC , Proteínas de Bactérias , Proteínas de Ligação a DNA , Proteínas de Escherichia coli , Transativadores , Regulação Alostérica , Aminoácidos/química , Aminoácidos/genética , Fator de Transcrição AraC/química , Fator de Transcrição AraC/genética , Fator de Transcrição AraC/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Mutação/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transativadores/química , Transativadores/genética , Transativadores/metabolismo
2.
Nat Chem Biol ; 15(9): 917-924, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31406375

RESUMO

We describe a synthetic genetic circuit for controlling asymmetric cell division in Escherichia coli in which a progenitor cell creates a differentiated daughter cell while retaining its original phenotype. Specifically, we engineered an inducible system that can bind and segregate plasmid DNA to a single position in the cell. Upon cell division, colocalized plasmids are kept by one and only one of the daughter cells. The other daughter cell receives no plasmid DNA and is irreversibly differentiated from its sibling. In this way, we achieved asymmetric cell division through asymmetric plasmid partitioning. We then used this system to achieve physical separation of genetically distinct cells by tying motility to differentiation. Finally, we characterized an orthogonal inducible circuit that enables the simultaneous asymmetric partitioning of two plasmid species, resulting in cells that have four distinct differentiated states. These results point the way toward the engineering of multicellular systems from prokaryotic hosts.


Assuntos
Divisão Celular Assimétrica/fisiologia , Proteínas de Bactérias/metabolismo , Caulobacter crescentus/fisiologia , Escherichia coli/fisiologia , Divisão Celular Assimétrica/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Plasmídeos , Biologia Sintética
3.
Proc Natl Acad Sci U S A ; 110(13): 5028-33, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23479654

RESUMO

The construction of synthetic gene circuits relies on our ability to engineer regulatory architectures that are orthogonal to the host's native regulatory pathways. However, as synthetic gene circuits become larger and more complicated, we are limited by the small number of parts, especially transcription factors, that work well in the context of the circuit. The current repertoire of transcription factors consists of a limited selection of activators and repressors, making the implementation of transcriptional logic a complicated and component-intensive process. To address this, we modified bacteriophage T7 RNA polymerase (T7 RNAP) to create a library of transcriptional AND gates for use in Escherichia coli by first splitting the protein and then mutating the DNA recognition domain of the C-terminal fragment to alter its promoter specificity. We first demonstrate that split T7 RNAP is active in vivo and compare it with full-length enzyme. We then create a library of mutant split T7 RNAPs that have a range of activities when used in combination with a complimentary set of altered T7-specific promoters. Finally, we assay the two-input function of both wild-type and mutant split T7 RNAPs and find that regulated expression of the N- and C-terminal fragments of the split T7 RNAPs creates AND logic in each case. This work demonstrates that mutant split T7 RNAP can be used as a transcriptional AND gate and introduces a unique library of components for use in synthetic gene circuits.


Assuntos
RNA Polimerases Dirigidas por DNA/química , Escherichia coli/genética , Biblioteca Gênica , Mutação , Regiões Promotoras Genéticas , RNA Bacteriano/biossíntese , Proteínas Virais/química , RNA Polimerases Dirigidas por DNA/genética , RNA Bacteriano/química , RNA Bacteriano/genética , Proteínas Virais/genética
5.
Arch Biochem Biophys ; 481(1): 45-51, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18976628

RESUMO

The functionality of regions within the equatorial domain of Group II chaperonins is poorly understood. Previously we showed that a 70 amino acid sequence within this domain on the single-subunit recombinant thermosome from Methanocaldococcus jannaschii (rTHS) contains residues directly responsible for refolding protein substrates [L.M. Bergeron, C. Lee, D.S. Clark, Identification of a critical chaperoning region on an archaeal recombinant thermosome, Biochem. Biophys. Res. Commun. 369 (2008) 707-711]. In the present study, 6-aminopenicillanic acid (6-APA) was found to bind to rTHS and inhibit it from refolding proteins. Fluorescence anisotropy was used to measure a 6-APA/rTHS dissociation constant of 17.1 microM and verify that the binding site is within the first 70 amino-terminal rTHS residues. Docking simulations point to a specific loop region at residues 53-57 on rTHS as the most likely binding region. This loop region is located within the oligomeric association sites of the wild-type thermosome. These results implicate a specific equatorial region of Group II chaperonins in the refolding of proteins, and suggest its importance in conformational changes that accompany chaperone function.


Assuntos
Proteínas Arqueais/química , Chaperoninas/química , Methanococcaceae/metabolismo , Chaperonas Moleculares/química , Polarização de Fluorescência , Modelos Moleculares , Ácido Penicilânico/análogos & derivados , Ácido Penicilânico/química , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Termossomos
6.
Annu Rev Biophys ; 47: 447-467, 2018 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-29570353

RESUMO

The ability of bacterial cells to adjust their gene expression program in response to environmental perturbation is often critical for their survival. Recent experimental advances allowing us to quantitatively record gene expression dynamics in single cells and in populations coupled with mathematical modeling enable mechanistic understanding on how these responses are shaped by the underlying regulatory networks. Here, we review how the combination of local and global factors affect dynamical responses of gene regulatory networks. Our goal is to discuss the general principles that allow extrapolation from a few model bacteria to less understood microbes. We emphasize that, in addition to well-studied effects of network architecture, network dynamics are shaped by global pleiotropic effects and cell physiology.


Assuntos
Bactérias/genética , Redes Reguladoras de Genes/genética , Humanos
7.
ACS Synth Biol ; 7(8): 1834-1843, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30040895

RESUMO

Recent advances in synthetic biology have led to a wealth of well-characterized genetic parts. As parts libraries grow, so too does the potential to create novel multi-input promoters that integrate disparate signals to determine transcriptional output. Our ability to construct such promoters will outpace our ability to characterize promoter performance, due to the vast number of input combinations. In this study, we examine the input-output relations of recently developed synthetic multi-input promoters and describe two methods for predicting their behavior. The first method uses 1-dimensional induction data obtained from experiments on single-input systems to predict the n-dimensional induction responses of systems with n inputs. We demonstrate that this approach accurately predicts Boolean (on/off) responses of multi-input systems consisting of novel chimeric transcription factors and hybrid promoters in Escherichia coli. The second method uses only a small amount of multi-input response data to accurately predict analog system response over the entire landscape of input combinations. Taken together, these methods facilitate the design of synthetic circuits that utilize multi-input promoters.


Assuntos
Regiões Promotoras Genéticas/genética , Escherichia coli/genética , Biologia Sintética/métodos , Transcrição Gênica/genética
8.
Nat Commun ; 9(1): 64, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29302024

RESUMO

One challenge for synthetic biologists is the predictable tuning of genetic circuit regulatory components to elicit desired outputs. Gene expression driven by ligand-inducible transcription factor systems must exhibit the correct ON and OFF characteristics: appropriate activation and leakiness in the presence and absence of inducer, respectively. However, the dynamic range of a promoter (i.e., absolute difference between ON and OFF states) is difficult to control. We report a method that tunes the dynamic range of ligand-inducible promoters to achieve desired ON and OFF characteristics. We build combinatorial sets of AraC-and LasR-regulated promoters containing -10 and -35 sites from synthetic and Escherichia coli promoters. Four sequence combinations with diverse dynamic ranges were chosen to build multi-input transcriptional logic gates regulated by two and three ligand-inducible transcription factors (LacI, TetR, AraC, XylS, RhlR, LasR, and LuxR). This work enables predictable control over the dynamic range of regulatory components.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Algoritmos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Ligantes , Modelos Genéticos , Termodinâmica , Fatores de Transcrição/metabolismo , Transcrição Gênica
9.
J Mol Biol ; 428(4): 671-678, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26410588

RESUMO

Protein families evolve functional variation by accumulating point mutations at functionally important amino acid positions. Homologs in the LacI/GalR family of transcription regulators have evolved to bind diverse DNA sequences and allosteric regulatory molecules. In addition to playing key roles in bacterial metabolism, these proteins have been widely used as a model family for benchmarking structural and functional prediction algorithms. We have collected manually curated sequence alignments for >3000 sequences, in vivo phenotypic and biochemical data for >5750 LacI/GalR mutational variants, and noncovalent residue contact networks for 65 LacI/GalR homolog structures. Using this rich data resource, we compared the noncovalent residue contact networks of the LacI/GalR subfamilies to design and experimentally validate an allosteric mutant of a synthetic LacI/GalR repressor for use in biotechnology. The AlloRep database (freely available at www.AlloRep.org) is a key resource for future evolutionary studies of LacI/GalR homologs and for benchmarking computational predictions of functional change.


Assuntos
Bases de Dados Genéticas , Regulação Bacteriana da Expressão Gênica , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transcrição Gênica , Proteínas Mutantes/química , Proteínas Repressoras/química
10.
ACS Synth Biol ; 3(9): 645-51, 2014 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-25035932

RESUMO

In prokaryotes, the construction of synthetic, multi-input promoters is constrained by the number of transcription factors that can simultaneously regulate a single promoter. This fundamental engineering constraint is an obstacle to synthetic biologists because it limits the computational capacity of engineered gene circuits. Here, we demonstrate that complex multi-input transcriptional logic gating can be achieved through the use of ligand-inducible chimeric transcription factors assembled from the LacI/GalR family. These modular chimeras each contain a ligand-binding domain and a DNA-binding domain, both of which are chosen from a library of possibilities. When two or more chimeras have the same DNA-binding domain, they independently and simultaneously regulate any promoter containing the appropriate operator site. In this manner, simple transcriptional AND gating is possible through the combination of two chimeras, and multiple-input AND gating is possible with the simultaneous use of three or even four chimeras. Furthermore, we demonstrate that orthogonal DNA-binding domains and their cognate operators allow the coexpression of multiple, orthogonal AND gates. Altogether, this work provides synthetic biologists with novel, ligand-inducible logic gates and greatly expands the possibilities for engineering complex synthetic gene circuits.


Assuntos
Proteínas de Escherichia coli/genética , Repressores Lac/genética , Modelos Moleculares , Proteínas Repressoras/genética , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Isopropiltiogalactosídeo/farmacologia , Ligantes , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Transcrição Gênica/efeitos dos fármacos , Proteína Vermelha Fluorescente
11.
ACS Synth Biol ; 2(1): 47-58, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23656325

RESUMO

Continued advances in metabolic engineering are increasing the number of small molecules being targeted for microbial production. Pathway yields and productivities, however, are often suboptimal, and strain improvement remains a persistent challenge given that the majority of small molecules are difficult to screen for and their biosynthesis does not improve host fitness. In this work, we have developed a generalized approach to screen or select for improved small-molecule biosynthesis using transcription factor-based biosensors. Using a tetracycline resistance gene 3' of a small-molecule inducible promoter, host antibiotic resistance, and hence growth rate, was coupled to either small-molecule concentration in the growth medium or a small-molecule production phenotype. Biosensors were constructed for two important chemical classes, dicarboxylic acids and alcohols, using transcription factor-promoter pairs derived from Pseudomonas putida, Thauera butanivorans, or E. coli. Transcription factors were selected for specific activation by either succinate, adipate, or 1-butanol, and we demonstrate product-dependent growth in E. coli using all three compounds. The 1-butanol biosensor was applied in a proof-of-principle liquid culture screen to optimize 1-butanol biosynthesis in engineered E. coli, identifying a pathway variant yielding a 35% increase in 1-butanol specific productivity through optimization of enzyme expression levels. Lastly, to demonstrate the capacity to select for enzymatic activity, the 1-butanol biosensor was applied as synthetic selection, coupling in vivo 1-butanol biosynthesis to E. coli fitness, and an 120-fold enrichment for a 1-butanol production phenotype was observed following a single round of positive selection.


Assuntos
Bibliotecas de Moléculas Pequenas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , 1-Butanol/metabolismo , Técnicas Biossensoriais/métodos , Ácidos Dicarboxílicos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Engenharia Genética/métodos , Engenharia Metabólica/métodos , Regiões Promotoras Genéticas
12.
ACS Synth Biol ; 1(10): 445-50, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-23656183

RESUMO

Plasmid-based genetic systems in Escherichia coli are a staple of synthetic biology. However, the use of plasmids imposes limitations on the size of synthetic gene circuits and the ease with which they can be placed into bacterial hosts. For instance, unique selective markers must be used for each plasmid to ensure their maintenance in the host. These selective markers are most often genes encoding resistance to antibiotics such as ampicillin or kanamycin. However, the simultaneous use of multiple antibiotics to retain different plasmids can place undue stress on the host and increase the cost of growth media. To address this problem, we have developed a method for stably transforming three different plasmids in E. coli using a single antibiotic selective marker. To do this, we first examined two different systems with which two plasmids may be maintained. These systems make use of either T7 RNA polymerase-specific regulation of the resistance gene or split antibiotic resistance enzymes encoded on separate plasmids. Finally, we combined the two methods to create a system with which three plasmids can be transformed and stably maintained using a single selective marker. This work shows that large-scale plasmid-based synthetic gene circuits need not be limited by the use of multiple antibiotic resistance genes.


Assuntos
Escherichia coli/genética , Marcadores Genéticos/genética , Plasmídeos/genética , Transformação Genética , Resistência Microbiana a Medicamentos , Técnicas de Transferência de Genes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA