Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 32(9): 15680-15690, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38859213

RESUMO

High-quality-factor optical microresonators have become an appealing object for numerous applications. However, the mid-infrared band experiences a lack of applicable materials for nonlinear photonics. Crystalline germanium demonstrates attractive material properties such as high nonlinear refractive index, large transparency window including the mid-IR band, particularly long wave multiphonon absorption limit. Nevertheless, the reported optical losses in germanium microresonators might not allow the potential of the Ge-based devices to be revealed. In this study, we report the fabrication of germanium microresonators with radii of 1.35 and 1.5 mm, exhibiting exceptional quality factors (Q-factors) exceeding 20 million, approaching the absorption-limited values at a wavelength of 2.68 µm. These Q-factors are a hundred times higher than previously reported, to the best of our knowledge. We measured the two-photon absorption coefficient combined with free-carrier absorption leveraging the high-Q of the resonators (obtained ßTPA = (0.71 ± 0.12) · 10-8 m/W at 2.68 µm). This research underscores the potential of whispering gallery mode microresonators as valuable tools for measuring absorption coefficients at different wavelengths, providing a comprehensive analysis of various loss mechanisms. Furthermore, the exceptional Q-factors observed in germanium microresonators open intriguing opportunities for the advancement of germanium-based photonics within the mid-infrared spectral band.

2.
Opt Express ; 31(1): 313-327, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36606969

RESUMO

Self-injection locking of a diode laser to a high-quality-factor microresonator is widely used for frequency stabilization and linewidth narrowing. We constructed several microresonator-based laser sources with measured instantaneous linewidths of 1 Hz and used them for investigation and implementation of the self-injection locking effect. We studied analytically and experimentally the dependence of the stabilization coefficient on tunable parameters such as locking phase and coupling rate. It was shown that precise control of the locking phase allows fine-tuning of the generated frequency from the stabilized laser diode. We also showed that it is possible for such laser sources to realize fast continuous and linear frequency modulation by injection current tuning inside the self-injection locking regime. We conceptually demonstrate coherent frequency-modulated continuous wave LIDAR over a distance of 10 km using such a microresonator-stabilized laser diode in the frequency-chirping regime and measure velocities as low as sub-micrometer per second in the unmodulated case. These results could be of interest to cutting-edge technology applications such as space debris monitoring and long-range object classification, high-resolution spectroscopy, and others.

3.
Opt Lett ; 48(9): 2353-2356, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37126272

RESUMO

Stability of platicons in hot cavities with normal group velocity dispersion at the interplay of Kerr and thermal nonlinearities was addressed numerically. The stability analysis was performed for different ranges of pump amplitude, thermal nonlinearity coefficient, and thermal relaxation time. It was revealed that for the positive thermal effect (i.e., the directions of the nonlinear and thermal resonance shifts are the same), the high-energy wide platicons are stable, while the negative thermal coefficient provides the stability of narrow platicons.

4.
Opt Express ; 30(10): 17094-17105, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36221539

RESUMO

Diode laser self-injection locking (SIL) to a whispering gallery mode of a high quality factor resonator is a widely used method for laser linewidth narrowing and high-frequency noise suppression. SIL has already been used for the demonstration of ultra-low-noise photonic microwave oscillators and soliton microcomb generation and has a wide range of possible applications. Up to date, SIL was demonstrated only with a single laser. However, multi-frequency and narrow-linewidth laser sources are in high demand for modern telecommunication systems, quantum technologies, and microwave photonics. Here we experimentally demonstrate the dual-laser SIL of two multifrequency laser diodes to different modes of an integrated Si3N4 microresonator. Simultaneous spectrum collapse of both lasers, as well as linewidth narrowing and high-frequency noise suppression , as well as strong nonlinear interaction of the two fields with each other, are observed. Locking both lasers to the same mode results in a simultaneous frequency and phase stabilization and coherent addition of their outputs. Additionally, we provide a comprehensive dual-SIL theory and investigate the influence of lasers on each other caused by nonlinear effects in the microresonator.

5.
Opt Lett ; 47(24): 6325-6328, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36538429

RESUMO

The advantages of high-quality-factor (high-Q) whispering gallery mode (WGM) microresonators can be applied to develop novel photonic devices for the mid-infrared (mid-IR) range. ZBLAN (glass based on heavy metal fluorides) is one of the most promising materials to be used for this purpose due to low optical losses in the mid-IR. We developed an original, to the best of our knowledge, fabrication method based on melting of commercially available ZBLAN-based optical fiber to produce high-Q ZBLAN microspheres with the diameters of 250 to 350 µm. We effectively excited whispering gallery modes in these microspheres and demonstrated high quality factor both at 1.55 µm and 2.64 µm. Intrinsic quality factor at telecom wavelength was shown to be (5.4 ± 0.4) × 108 which is defined by the material losses in ZBLAN. In the mid-IR at 2.64 µm we demonstrated record quality factor in ZBLAN exceeding 108 which is comparable to the highest values of the Q-factor among all materials in the mid-IR.

6.
Sci Rep ; 13(1): 9830, 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37330585

RESUMO

Narrow-linewidth lasers are in extensive demand for numerous cutting-edge applications. Such lasers operating at the visible range are of particular interest. Self-injection locking of a laser diode frequency to a high-Q whispering gallery mode is an effective and universal way to achieve superior laser performance. We demonstrate ultranarrow lasing with less than 10 Hz instantaneous linewidth for 20 [Formula: see text]s averaging time at 638 nm using a Fabry-Pérot laser diode locked to a crystalline MgF[Formula: see text] microresonator. The linewidth measured with a [Formula: see text]-separation line technique that characterizes 10 ms stability is as low as 1.4 kHz. Output power exceeds 80 mW. Demonstrated results are among the best for visible-range lasers in terms of linewidth combined with solid output power. We additionally report the first demonstration of a gain-switched regime for such stabilized Fabry-Pérot laser diode showing a high-contrast visible frequency comb generation. Tunable linespacing from 10 MHz to 3.8 GHz is observed. We demonstrated that the beatnote between the lines has sub-Hz linewidth and experiences spectral purification in the self-injection locking regime. This result might be of special importance for spectroscopy in the visible range.


Assuntos
Lasers Semicondutores , Luz , Injeções
7.
Nat Commun ; 10(1): 1623, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30944332

RESUMO

The original version of this Article contained an error in the first sentence of the Acknowledgements, which incorrectly read 'This publication was supported by Contract HR0011-15-C-0055 (DODOS) from the Defense Advanced Research Projects Agency (DARPA), Defense Sciences Office (DSO).' The correct version states 'Microsystems Technology Office (MTO)' in place of 'Defense Sciences Office (DSO)'. This has been corrected in both the PDF and HTML versions of the Article.

8.
Nat Commun ; 10(1): 680, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30737384

RESUMO

Microcombs provide a path to broad-bandwidth integrated frequency combs with low power consumption, which are compatible with wafer-scale fabrication. Yet, electrically-driven, photonic chip-based microcombs are inhibited by the required high threshold power and the frequency agility of the laser for soliton initiation. Here we demonstrate an electrically-driven soliton microcomb by coupling a III-V-material-based (indium phosphide) multiple-longitudinal-mode laser diode chip to a high-Q silicon nitride microresonator fabricated using the photonic Damascene process. The laser diode is self-injection locked to the microresonator, which is accompanied by the narrowing of the laser linewidth, and the simultaneous formation of dissipative Kerr solitons. By tuning the laser diode current, we observe transitions from modulation instability, breather solitons, to single-soliton states. The system operating at an electronically-detectable sub-100-GHz mode spacing requires less than 1 Watt of electrical power, can fit in a volume of ca. 1 cm3, and does not require on-chip filters and heaters, thus simplifying the integrated microcomb.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA