Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
PLoS Genet ; 15(11): e1008446, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31725724

RESUMO

For over a century, mice have been used to model human disease, leading to many fundamental discoveries about mammalian biology and the development of new therapies. Mouse genetics research has been further catalysed by a plethora of genomic resources developed in the last 20 years, including the genome sequence of C57BL/6J and more recently the first draft reference genomes for 16 additional laboratory strains. Collectively, the comparison of these genomes highlights the extreme diversity that exists at loci associated with the immune system, pathogen response, and key sensory functions, which form the foundation for dissecting phenotypic traits in vivo. We review the current status of the mouse genome across the diversity of the mouse lineage and discuss the value of mice to understanding human disease.


Assuntos
Animais Endogâmicos/genética , Genoma/genética , Genômica , Animais , Mapeamento Cromossômico , Haplótipos , Humanos , Endogamia , Camundongos , Fenótipo
2.
Artigo em Inglês | MEDLINE | ID: mdl-31212010

RESUMO

Cocaine dependence is a complex psychiatric disorder that is highly comorbid with other psychiatric traits. Twin and adoption studies suggest that genetic variants contribute substantially to cocaine dependence susceptibility, which has an estimated heritability of 65-79%. Here we performed a meta-analysis of genome-wide association studies of cocaine dependence using four datasets from the dbGaP repository (2085 cases and 4293 controls, all of them selected by their European ancestry). Although no genome-wide significant hits were found in the SNP-based analysis, the gene-based analysis identified HIST1H2BD as associated with cocaine-dependence (10% FDR). This gene is located in a region on chromosome 6 enriched in histone-related genes, previously associated with schizophrenia (SCZ). Furthermore, we performed LD Score regression analysis with comorbid conditions and found significant genetic correlations between cocaine dependence and SCZ, ADHD, major depressive disorder (MDD) and risk taking. We also found, through polygenic risk score analysis, that all tested phenotypes are significantly associated with cocaine dependence status: SCZ (R2 = 2.28%; P = 1.21e-26), ADHD (R2 = 1.39%; P = 4.5e-17), risk taking (R2 = 0.60%; P = 2.7e-08), MDD (R2 = 1.21%; P = 4.35e-15), children's aggressive behavior (R2 = 0.3%; P = 8.8e-05) and antisocial behavior (R2 = 1.33%; P = 2.2e-16). To our knowledge, this is the largest reported cocaine dependence GWAS meta-analysis in European-ancestry individuals. We identified suggestive associations in regions that may be related to cocaine dependence and found evidence for shared genetic risk factors between cocaine dependence and several comorbid psychiatric traits. However, the sample size is limited and further studies are needed to confirm these results.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/epidemiologia , Transtornos Relacionados ao Uso de Cocaína/genética , Estudo de Associação Genômica Ampla , Histonas/genética , Transtornos Mentais/epidemiologia , Transtornos Mentais/genética , Estudos de Casos e Controles , Comorbidade , Feminino , Predisposição Genética para Doença/genética , Humanos , Masculino , População Branca/genética
3.
Transl Psychiatry ; 9(1): 242, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31582733

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder caused by an interplay of genetic and environmental factors. Epigenetics is crucial to lasting changes in gene expression in the brain. Recent studies suggest a role for DNA methylation in ADHD. We explored the contribution to ADHD of allele-specific methylation (ASM), an epigenetic mechanism that involves SNPs correlating with differential levels of DNA methylation at CpG sites. We selected 3896 tagSNPs reported to influence methylation in human brain regions and performed a case-control association study using the summary statistics from the largest GWAS meta-analysis of ADHD, comprising 20,183 cases and 35,191 controls. We observed that genetic risk variants for ADHD are enriched in ASM SNPs and identified associations with eight tagSNPs that were significant at a 5% false discovery rate (FDR). These SNPs correlated with methylation of CpG sites lying in the promoter regions of six genes. Since methylation may affect gene expression, we inspected these ASM SNPs together with 52 ASM SNPs in high LD with them for eQTLs in brain tissues and observed that the expression of three of those genes was affected by them. ADHD risk alleles correlated with increased expression (and decreased methylation) of ARTN and PIDD1 and with a decreased expression (and increased methylation) of C2orf82. Furthermore, these three genes were predicted to have altered expression in ADHD, and genetic variants in C2orf82 correlated with brain volumes. In summary, we followed a systematic approach to identify risk variants for ADHD that correlated with differential cis-methylation, identifying three novel genes contributing to the disorder.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Encéfalo/patologia , Metilação de DNA , Peptídeos e Proteínas de Sinalização Intracelular/genética , Polimorfismo de Nucleotídeo Único , Alelos , Estudos de Casos e Controles , Ilhas de CpG , Análise Mutacional de DNA , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/genética , Epigênese Genética , Feminino , Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Proteínas do Tecido Nervoso/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA