Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 13(42)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28940722

RESUMO

The integration of graphene with colloidal quantum dots (QDs) that have tunable light absorption affords new opportunities for optoelectronic applications as such a hybrid system solves the problem of both quantity and mobility of photocarriers. In this work, a hybrid system comprising of monolayer graphene and self-doped colloidal copper phosphide (Cu3-x P) QDs is developed for efficient broadband photodetection. Unlike conventional PbS QDs that are toxic, Cu3-x P QDs are environmental friendly and have plasmonic resonant absorption in near-infrared (NIR) wavelength. The half-covered graphene with Cu3-x P nanocrystals (NCs) behaves as a self-driven p-n junction and shows durable photoresponse in NIR range. A comparison experiment reveals that the surface ligand attached to Cu3-x P NCs plays a key role in determining the charge transfer efficiency from Cu3-x P to graphene. The most efficient three-terminal photodetectors based on graphene-Cu3-x P exhibit broadband photoresponse from 400 to 1550 nm with an ultrahigh responsivity (1.59 × 105 A W-1 ) and high photoconductive gain (6.66 × 105 ) at visible wavelength (405 nm), and a good responsivity of 9.34 A W-1 at 1550 nm. The demonstration of flexible graphene-Cu3-x P photodetectors operated at NIR wavelengths may find potential applications in optical sensing, biological imaging, and wearable devices.

2.
Nat Commun ; 10(1): 28, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30604756

RESUMO

MicroRNA exhibits differential expression levels in cancer and can affect cellular transformation, carcinogenesis and metastasis. Although fluorescence techniques using dye molecule labels have been studied, label-free molecular-level quantification of miRNA is extremely challenging. We developed a surface plasmon resonance sensor based on two-dimensional nanomaterial of antimonene for the specific label-free detection of clinically relevant biomarkers such as miRNA-21 and miRNA-155. First-principles energetic calculations reveal that antimonene has substantially stronger interaction with ssDNA than the graphene that has been previously used in DNA molecule sensing, due to thanking for more delocalized 5s/5p orbitals in antimonene. The detection limit can reach 10 aM, which is 2.3-10,000 times higher than those of existing miRNA sensors. The combination of not-attempted-before exotic sensing material and SPR architecture represents an approach to unlocking the ultrasensitive detection of miRNA and DNA and provides a promising avenue for the early diagnosis, staging, and monitoring of cancer.


Assuntos
Antimônio/química , Técnicas Biossensoriais/instrumentação , Grafite/química , MicroRNAs/isolamento & purificação , Ressonância de Plasmônio de Superfície/instrumentação , Biomarcadores Tumorais/isolamento & purificação , Técnicas Biossensoriais/métodos , DNA de Cadeia Simples/isolamento & purificação , Humanos , Dispositivos Lab-On-A-Chip , Limite de Detecção , Nanoestruturas/química , Neoplasias/diagnóstico , Neoplasias/genética , Sensibilidade e Especificidade , Ressonância de Plasmônio de Superfície/métodos
3.
ACS Appl Mater Interfaces ; 11(21): 19397-19403, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31026141

RESUMO

Interfaces between metals and semiconducting materials can inevitably influence the magnetotransport properties, which are crucial for technological applications ranging from magnetic sensing to storage devices. By taking advantage of this, a metallic graphene foam is integrated with semiconducting copper-based metal sulfide nanocrystals, i.e., Cu2ZnSnS4 (copper-zinc-tin-sulfur) without direct chemical bonding and structural damage, which creates numerous nanoboundaries that can be basically used to tune the magnetotransport properties. Herein, the magnetoresistance of a graphene foam is enhanced from nearly 90 to 130% at room temperature and under the application of 5 T magnetic field strength due to the addition of Cu2ZnSnS4 nanocrystals in high densities. We believe that the enhancement of magnetoresistance in hybrid graphene foam/Cu2ZnSnS4 nanocrystals is due to the evolution of the mobility fluctuation mechanism, triggered by the formation of nanoboundaries. Incorporating Cu2ZnSnS4 nanocrystals into a graphene foam not only provides an effective way to further enhance the magnitude of magnetoresistance but also opens a suitable window to achieve efficient and highly functional magnetic sensors with a large, linear, and controllable response.

4.
Light Sci Appl ; 6(2): e16204, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30167226

RESUMO

We used scattering-type scanning near-field optical microscopy (s-SNOM) to investigate the plasmonic properties of edges in well-defined graphene nanostructures, including sharp tapers, nanoribbons and nanogaps, which were all fabricated via the growth-etching chemical vapor deposition (GECVD) method. The obtained near-field images revealed the localized plasmon modes along the graphene nanoribbon; these modes strongly depended on the size of the graphene pattern, the angle of the tapered graphene and the infrared excitation wavelength. These interesting plasmon modes were verified by numerical simulations and explained by the reflection, and interference of electromagnetic waves at the graphene-SiO2 edge. The constructive interference at the graphene nanogap caused by charge accumulation was demonstrated for the first time. Using the infrared nanoimaging technique, greater plasmon broadening was observed in the zigzag edge than in the armchair edge. Our study suggests that graphene edges should be separated by an effective working distance to avoid the overlapping of localized plasmon modes, which is very important for the design of graphene-based plasmonic circuits and devices.

5.
ACS Appl Mater Interfaces ; 9(14): 12759-12765, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28317370

RESUMO

Even though the nonlinear optical effects of solution processed organic-inorganic perovskite films have been studied, the nonlinear optical properties in two-dimensional (2D) perovskites, especially their applications for ultrafast photonics, are largely unexplored. In comparison to bulk perovskite films, 2D perovskite nanosheets with small thicknesses of a few unit cells are more suitable for investigating the intrinsic nonlinear optical properties because bulk recombination of photocarriers and the nonlinear scattering are relatively small. In this research, we systematically investigated the nonlinear optical properties of 2D perovskite nanosheets derived from a combined solution process and vapor phase conversion method. It was found that 2D perovskite nanosheets have stronger saturable absorption properties with large modulation depth and very low saturation intensity compared with those of bulk perovskite films. Using an all dry transfer method, we constructed a new type of saturable absorber device based on single piece 2D perovskite nanosheet. Stable soliton state mode-locking was achieved, and ultrafast picosecond pulses were generated at 1064 nm. This work is likely to pave the way for ultrafast photonic and optoelectronic applications based on 2D perovskites.

6.
ACS Appl Mater Interfaces ; 9(41): 36137-36145, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28948769

RESUMO

The presence of a direct band gap and high carrier mobility in few-layer black phosphorus (BP) offers opportunities for using this material for infrared (IR) light detection. However, the poor air stability of BP and its large contact resistance with metals pose significant challenges to the fabrication of highly efficient IR photodetectors with long lifetimes. In this work, we demonstrate a graphene-BP heterostructure photodetector with ultrahigh responsivity and long-term stability at IR wavelengths. In our device architecture, the top layer of graphene functions not only as an encapsulation layer but also as a highly efficient transport layer. Under illumination, photoexcited electron-hole pairs generated in BP are separated and injected into graphene, significantly reducing the Schottky barrier between BP and the metal electrodes and leading to efficient photocurrent extraction. The graphene-BP heterostructure phototransistor exhibits a long-term photoresponse at near-infrared wavelength (1550 nm) with an ultrahigh photoresponsivity (up to 3.3 × 103 A W-1), a photoconductive gain (up to 1.13 × 109), and a rise time of about 4 ms. Considering the thickness-dependent band gap in BP, this material represents a powerful photodetection platform that is able to sustain high performance in the IR wavelength regime with potential applications in remote sensing, biological imaging, and environmental monitoring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA