Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(13)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37446824

RESUMO

The flammability of various materials used in industry is an important issue in the modern world. This work is devoted to the study of the effect of flame retardants, graphene and DDM-DOPO (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-4,4'-diamino-diphenyl methane), on the flammability of glass-fiber-reinforced epoxy resin (GFRER). Samples were made without additives and with additives of fire retardants: graphene and DDM-DOPO in various proportions. To study the flammability of the samples, standard flammability tests were carried out, such as thermogravimetric analysis, the limiting oxygen index (LOI) test, and cone calorimetry. In addition, in order to test the effectiveness of fire retardants under real fire conditions, for the first time, the thermal structure of downward flame propagation over GFRER composites was measured using thin thermocouples. For the first time, the measured thermal structure of the flame was compared with the results of numerical simulations of flame propagation over GFRER.


Assuntos
Incêndios , Retardadores de Chama , Grafite , Resinas Epóxi , Calorimetria
2.
J Phys Chem A ; 126(50): 9475-9484, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36480250

RESUMO

Ketene is an important species in core mechanisms for the combustion of hydrocarbon and oxygenated fuels, but direct experiments with ketene are challenging to conduct due to its high reactivity. Diacetyl can be used as a precursor of ketene, and abundant ketene is present in premixed flames of diacetyl. However, predictions of ketene in diacetyl flames with previous models have significant uncertainties. The study of Sun et al. [Sun, W.; Wang, J.; Huang, C.; Hansen, N.; Yang, B. Combust. Flame, 2019, 205, 11-21, DOI: 10.1016/j.combustflame.2019.03.037] shows that the flame structure measurements should be performed under certain conditions to improve the predictive accuracy of ketene in diacetyl flames. In this work, the structures of three laminar premixed flames of diacetyl under atmospheric pressure in a range of equivalence ratios are examined with flame-sampling molecular-beam mass spectrometry (MBMS). With the new experimental data and the data available in literature, Bayesian analysis is performed to optimize the kinetic model. The obtained optimized model is compared with the original one, and the results show that the optimized model agrees better with the experimental data than the original one. The uncertainties of the rate coefficients of some key reactions are constrained with these experimental data, which eventually leads to smaller modeling uncertainties for ketene concentrations under studied conditions.

3.
Materials (Basel) ; 17(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38930279

RESUMO

A solvent-free method was proposed for the synthesis of hexaimidazolecobalt(II) nitrate and perchlorate complexes-[Co(C3H4N2)6](NO3)2 and [Co(C3H4N2)6](ClO4)2-by adding cobalt salts to melted imidazole. The composition, charge state of the metal, and the structure of the resulting complexes were confirmed by elemental analysis, XPS, IR spectroscopy, and XRD. The study of the thermochemical properties of the synthesized complexes showed that [Co(C3H4N2)6](NO3)2 and [Co(C3H4N2)6](ClO4)2 are thermally stable up to 150 and 170 °C, respectively. When the critical temperature of thermal decomposition is reached, oxidative two-stage gasification is observed. In this case, the organic component of the [Co(C3H4N2)6](NO3)2 complex undergoes almost complete gasification to form Co3O4 with a slight admixture of CoO, which makes it attractive as a component of gas-generation compositions, like airbags.

4.
Materials (Basel) ; 16(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37048912

RESUMO

CO2 methanation was studied in the presence of nickel catalysts obtained by the solid-state combustion method. Complexes with a varying number of ethylenediamine molecules in the coordination sphere of nickel were chosen as the precursors of the active component of the catalysts. Their synthesis was carried out without the use of solvents, which made it possible to avoid the stages of their separation from the solution and the utilization of waste liquids. The composition and structure of the synthesized complexes were confirmed by elemental analysis, IR spectroscopy, powder XRD and XPS methods. It was determined that their thermal decomposition in the combustion wave proceeds in multiple stages with the formation of NiO and Ni(OH)2, which are reduced to Ni0. Higher ethylenediamine content in the complex leads to a higher content of metal in the solid products of combustion. However, different ratios of oxidized and reduced forms of nickel do not affect the initial activation temperature of nickel catalysts in the presence of CO2. It was noted that, after activation, the sample obtained from [Ni(C2H8N2)2](NO3)2 exhibited the highest activity in CO2 methanation. Thus, this complex is a promising precursor for CO2 methanation catalysts, and its synthesis requires only a small amount of ethylenediamine.

5.
ACS Omega ; 7(50): 46900-46914, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36570235

RESUMO

1,2-Propylene oxide (PO, C3H6O) is considered as a promising agent for improving fuel. In this work, the effect of PO additives on the species pool in a premixed burner-stabilized fuel-rich (ϕ = 1.6) flame fueled by n-heptane/toluene mixture (7/3 by volume of liquids) at atmospheric pressure is studied by the flame-sampling molecular beam mass spectrometry and numerical modeling in order to get insight into the chemical aspects of the influence of oxygenates with an epoxy group on the formation of abundant intermediates (including PAH precursors) during combustion of fossil fuels. The flames with various loadings of PO in the fuel blend (from 0 to 16.3% in mole basis) are examined, and detailed kinetic mechanisms available in the literature are validated against the measurements of mole fraction profiles of reactants, major products, and many intermediate species. A higher reactivity of the fresh mixture and a reduction in the peak mole fractions of intermediates playing an important role in PAH formation (benzene, styrene, ethylbenzene, phenol, acetylene, diacetylene, etc.) are observed when PO is added. This was found to be due to simultaneously two factors: the partial replacement of "sooting" fuel (toluene, which is the main precursor of these species) with oxygenated additive, and the changes in the flame radical pool caused by PO addition. Propylene oxide additive was found to change the ratio between H, OH, O, and CH3 toward an increase in the proportion of O and CH3. The detailed kinetic mechanisms considered in the work are found to overpredict the peak mole fraction of acetylene, a key species playing a crucial role in PAH growth. Its chemistry is revisited in order to provide a better prediction of C2H2 and, as a result, PAHs.

6.
Materials (Basel) ; 16(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36614426

RESUMO

This work describes the mathematical modeling of the thermal decomposition of the complex compound [Ni(En)3](ClO4)2 (En = C2H8N2 = ethylenediamine) in an inert atmosphere under non-isothermal conditions. This process is characterized by several simultaneous and intense stages: elimination of ethylenediamine from the nickel coordination sphere, decomposition of perchlorate anions, and explosive-like oxidation of free or bound ethylenediamine. These stages overlap and merge into a one step on the differential thermogravimetric curve. Typically, this curve is modeled as a one-stage process during kinetic analysis. In this paper, for the first time, the data from the dynamic mass-spectral thermal analysis and thermogravimetric analysis were modeled using the hybrid genetic algorithm, and the results were compared. A two-stage scheme of [Ni(En)3](ClO4)2 thermolysis was proposed and the kinetic parameters for each stage were obtained. It was shown that the decomposition of [Ni(En)3](ClO4)2 begins with the elimination of one molecule of ethylenediamine (stage A), then the perchlorate anions quickly decompose with the evolution of oxygen (stage B). We believe that the resulting ClO4-x- (x = 1-3), as stronger oxidizing agents, instantly start an explosive-like exothermic process of ethylenediamine oxidation (stage B).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA