Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(11): e2214168120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36877844

RESUMO

A common challenge in drug design pertains to finding chemical modifications to a ligand that increases its affinity to the target protein. An underutilized advance is the increase in structural biology throughput, which has progressed from an artisanal endeavor to a monthly throughput of hundreds of different ligands against a protein in modern synchrotrons. However, the missing piece is a framework that turns high-throughput crystallography data into predictive models for ligand design. Here, we designed a simple machine learning approach that predicts protein-ligand affinity from experimental structures of diverse ligands against a single protein paired with biochemical measurements. Our key insight is using physics-based energy descriptors to represent protein-ligand complexes and a learning-to-rank approach that infers the relevant differences between binding modes. We ran a high-throughput crystallography campaign against the SARS-CoV-2 main protease (MPro), obtaining parallel measurements of over 200 protein-ligand complexes and their binding activities. This allows us to design one-step library syntheses which improved the potency of two distinct micromolar hits by over 10-fold, arriving at a noncovalent and nonpeptidomimetic inhibitor with 120 nM antiviral efficacy. Crucially, our approach successfully extends ligands to unexplored regions of the binding pocket, executing large and fruitful moves in chemical space with simple chemistry.


Assuntos
COVID-19 , Humanos , Ligantes , SARS-CoV-2 , Antivirais , Biologia
2.
Cereb Cortex ; 34(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38850215

RESUMO

Spinocerebellar ataxia type 3 (SCA3) is primarily characterized by progressive cerebellar degeneration, including gray matter atrophy and disrupted anatomical and functional connectivity. The alterations of cerebellar white matter structural network in SCA3 and the underlying neurobiological mechanism remain unknown. Using a cohort of 20 patients with SCA3 and 20 healthy controls, we constructed cerebellar structural networks from diffusion MRI and investigated alterations of topological organization. Then, we mapped the alterations with transcriptome data from the Allen Human Brain Atlas to identify possible biological mechanisms for regional selective vulnerability to white matter damage. Compared with healthy controls, SCA3 patients exhibited reduced global and nodal efficiency, along with a widespread decrease in edge strength, particularly affecting edges connected to hub regions. The strength of inter-module connections was lower in SCA3 group and negatively correlated with the Scale for the Assessment and Rating of Ataxia score, International Cooperative Ataxia Rating Scale score, and cytosine-adenine-guanine repeat number. Moreover, the transcriptome-connectome association study identified the expression of genes involved in synapse-related and metabolic biological processes. These findings suggest a mechanism of white matter vulnerability and a potential image biomarker for the disease severity, providing insights into neurodegeneration and pathogenesis in this disease.


Assuntos
Cerebelo , Conectoma , Doença de Machado-Joseph , Transcriptoma , Humanos , Masculino , Feminino , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Pessoa de Meia-Idade , Adulto , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/diagnóstico por imagem , Doença de Machado-Joseph/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Imagem de Difusão por Ressonância Magnética
3.
Cereb Cortex ; 34(13): 63-71, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696609

RESUMO

To investigate potential correlations between the susceptibility values of certain brain regions and the severity of disease or neurodevelopmental status in children with autism spectrum disorder (ASD), 18 ASD children and 15 healthy controls (HCs) were recruited. The neurodevelopmental status was assessed by the Gesell Developmental Schedules (GDS) and the severity of the disease was evaluated by the Autism Behavior Checklist (ABC). Eleven brain regions were selected as regions of interest and the susceptibility values were measured by quantitative susceptibility mapping. To evaluate the diagnostic capacity of susceptibility values in distinguishing ASD and HC, the receiver operating characteristic (ROC) curve was computed. Pearson and Spearman partial correlation analysis were used to depict the correlations between the susceptibility values, the ABC scores, and the GDS scores in the ASD group. ROC curves showed that the susceptibility values of the left and right frontal white matter had a larger area under the curve in the ASD group. The susceptibility value of the right globus pallidus was positively correlated with the GDS-fine motor scale score. These findings indicated that the susceptibility value of the right globus pallidus might be a viable imaging biomarker for evaluating the neurodevelopmental status of ASD children.


Assuntos
Transtorno do Espectro Autista , Encéfalo , Ferro , Imageamento por Ressonância Magnética , Humanos , Transtorno do Espectro Autista/diagnóstico por imagem , Masculino , Feminino , Criança , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Ferro/metabolismo , Ferro/análise , Pré-Escolar , Mapeamento Encefálico/métodos , Substância Branca/diagnóstico por imagem , Globo Pálido/diagnóstico por imagem
4.
Neuroimage ; 290: 120555, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38447683

RESUMO

Aberrant susceptibility due to iron level abnormality and brain network disconnections are observed in Alzheimer's disease (AD), with disrupted iron homeostasis hypothesized to be linked to AD pathology and neuronal loss. However, whether associations exist between abnormal quantitative susceptibility mapping (QSM), brain atrophy, and altered brain connectome in AD remains unclear. Based on multi-parametric brain imaging data from 30 AD patients and 26 healthy controls enrolled at the China-Japan Friendship Hospital, we investigated the abnormality of the QSM signal and volumetric measure across 246 brain regions in AD patients. The structural and functional connectomes were constructed based on diffusion MRI tractography and functional connectivity, respectively. The network topology was quantified using graph theory analyses. We identified seven brain regions with both reduced cortical thickness and abnormal QSM (p < 0.05) in AD, including the right superior frontal gyrus, left superior temporal gyrus, right fusiform gyrus, left superior parietal lobule, right superior parietal lobule, left inferior parietal lobule, and left precuneus. Correlations between cortical thickness and network topology computed across patients in the AD group resulted in statistically significant correlations in five of these regions, with higher correlations in functional compared to structural topology. We computed the correlation between network topological metrics, QSM value and cortical thickness across regions at both individual and group-averaged levels, resulting in a measure we call spatial correlations. We found a decrease in the spatial correlation of QSM and the global efficiency of the structural network in AD patients at the individual level. These findings may provide insights into the complex relationships among QSM, brain atrophy, and brain connectome in AD.


Assuntos
Doença de Alzheimer , Conectoma , Humanos , Doença de Alzheimer/patologia , Conectoma/métodos , Encéfalo , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Atrofia/patologia , Ferro
5.
Antimicrob Agents Chemother ; : e0161023, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687017

RESUMO

Efficient treatment of anthrax-related meningitis in patients poses a significant therapeutic challenge. Previously, we demonstrated in our anthrax meningitis rabbit model that ciprofloxacin treatment is ineffective with most of the treated animals succumbing to the infection. Herein we tested the efficacy of doxycycline in our rabbit model and found it highly effective. Since all of our findings are based on a rabbit model, we test the efficacy of ciprofloxacin or doxycycline in a specific central nervous system (CNS) model developed in non-human primates (NHPs). Similar to rabbits, ciprofloxacin treatment was ineffective, while doxycycline protected the infected rhesus macaques (n = 2) from the lethal CNS Bacillus anthracis infection. To test whether the low efficacy of Ciprofloxacin is an example of low efficacy of all fluoroquinolones or only this substance, we treated rabbits that were inoculated intracisterna magna (ICM) with levofloxacin or moxifloxacin. We found that in contrast to ciprofloxacin, levofloxacin and moxifloxacin were highly efficacious in treating lethal anthrax-related meningitis in rabbits and NHP (levofloxacin). We demonstrated (in naïve rabbits) that this difference probably results from variances in blood-brain-barrier penetration of the different fluoroquinolones. The combined treatment of doxycycline and any one of the tested fluoroquinolones was highly effective in the rabbit CNS infection model. The combined treatment of doxycycline and levofloxacin was effective in an inhalation rabbit model, as good as the doxycycline mono-therapy. These findings imply that while ciprofloxacin is highly effective as a post-exposure prophylactic drug, using this drug to treat symptomatic patients should be reconsidered.

6.
J Transl Med ; 22(1): 107, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38279111

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor in adults. This study aimed to construct immune-related long non-coding RNAs (lncRNAs) signature and radiomics signature to probe the prognosis and immune infiltration of GBM patients. METHODS: We downloaded GBM RNA-seq data and clinical information from The Cancer Genome Atlas (TCGA) project database, and MRI data were obtained from The Cancer Imaging Archive (TCIA). Then, we conducted a cox regression analysis to establish the immune-related lncRNAs signature and radiomics signature. Afterward, we employed a gene set enrichment analysis (GSEA) to explore the biological processes and pathways. Besides, we used CIBERSORT to estimate the abundance of tumor-infiltrating immune cells (TIICs). Furthermore, we investigated the relationship between the immune-related lncRNAs signature, radiomics signature and immune checkpoint genes. Finally, we constructed a multifactors prognostic model and compared it with the clinical prognostic model. RESULTS: We identified four immune-related lncRNAs and two radiomics features, which show the ability to stratify patients into high-risk and low-risk groups with significantly different survival rates. The risk score curves and Kaplan-Meier curves confirmed that the immune-related lncRNAs signature and radiomics signature were a novel independent prognostic factor in GBM patients. The GSEA suggested that the immune-related lncRNAs signature were involved in L1 cell adhesion molecular (L1CAM) interactions and the radiomics signature were involved signaling by Robo receptors. Besides, the two signatures was associated with the infiltration of immune cells. Furthermore, they were linked with the expression of critical immune genes and could predict immunotherapy's clinical response. Finally, the area under the curve (AUC) (0.890,0.887) and C-index (0.737,0.817) of the multifactors prognostic model were greater than those of the clinical prognostic model in both the training and validation sets, indicated significantly improved discrimination. CONCLUSIONS: We identified the immune-related lncRNAs signature and tradiomics signature that can predict the outcomes, immune cell infiltration, and immunotherapy response in patients with GBM.


Assuntos
Glioblastoma , RNA Longo não Codificante , Adulto , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , RNA Longo não Codificante/genética , Radiômica , Prognóstico , Área Sob a Curva , Microambiente Tumoral/genética
7.
Nucleic Acids Res ; 50(14): 8080-8092, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35849342

RESUMO

Translation of SARS-CoV-2-encoded mRNAs by the host ribosomes is essential for its propagation. Following infection, the early expressed viral protein NSP1 binds the ribosome, represses translation, and induces mRNA degradation, while the host elicits an anti-viral response. The mechanisms enabling viral mRNAs to escape this multifaceted repression remain obscure. Here we show that expression of NSP1 leads to destabilization of multi-exon cellular mRNAs, while intron-less transcripts, such as viral mRNAs and anti-viral interferon genes, remain relatively stable. We identified a conserved and precisely located cap-proximal RNA element devoid of guanosines that confers resistance to NSP1-mediated translation inhibition. Importantly, the primary sequence rather than the secondary structure is critical for protection. We further show that the genomic 5'UTR of SARS-CoV-2 drives cap-independent translation and promotes expression of NSP1 in an eIF4E-independent and Torin1-resistant manner. Upon expression, NSP1 further enhances cap-independent translation. However, the sub-genomic 5'UTRs are highly sensitive to eIF4E availability, rendering viral propagation partially sensitive to Torin1. We conclude that the combined NSP1-mediated degradation of spliced mRNAs and translation inhibition of single-exon genes, along with the unique features present in the viral 5'UTRs, ensure robust expression of viral mRNAs. These features can be exploited as potential therapeutic targets.


Assuntos
SARS-CoV-2 , Proteínas não Estruturais Virais , Regiões 5' não Traduzidas , Sequência de Bases , COVID-19/virologia , Fator de Iniciação 4E em Eucariotos/genética , Humanos , Biossíntese de Proteínas , Capuzes de RNA/genética , RNA Mensageiro/genética , RNA Viral/genética , SARS-CoV-2/genética , Proteínas não Estruturais Virais/genética
8.
Neuroimage ; 282: 120381, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37734476

RESUMO

OBJECTIVE: The objective of this study was to evaluate the whole-brain pattern of oxygen extraction fraction (OEF), cerebral blood flow (CBF), and cerebral metabolic rate of oxygen consumption (CMRO2) perturbation in Alzheimer's disease (AD) and investigate the relationship between regional cerebral oxygen metabolism and global cognition. METHODS: Twenty-six AD patients and 25 age-matched healthy controls (HC) were prospectively recruited in this study. Mini-Mental State Examination (MMSE) was used to evaluate cognitive status. We applied the QQ-CCTV algorithm which combines quantitative susceptibility mapping and quantitative blood oxygen level-dependent models (QQ) for OEF calculation. CBF map was computed from arterial spin labeling and CMRO2 was generated based on Fick's principle. Whole-brain and regional OEF, CBF, and CMRO2 analyses were performed. The associations between these measures in substructures of deep brain gray matter and MMSE scores were assessed. RESULTS: Whole brain voxel-wise analysis showed that CBF and CMRO2 values significantly decreased in AD predominantly in the bilateral angular gyrus, precuneus gyrus and parieto-temporal regions. Regional analysis showed that CBF value decreased in the bilateral caudal hippocampus and left rostral hippocampus and CMRO2 value decreased in left caudal and rostral hippocampus in AD patients. Considering all subjects in the AD and HC groups combined, the mean CBF and CMRO2 values in the bilateral hippocampus positively correlated with the MMSE score. CONCLUSION: CMRO2 mapping with the QQ-CCTV method - which is readily available in MR systems for clinical practice - can be a potential biomarker for AD. In addition, CMRO2 in the hippocampus may be a useful tool for monitoring cognitive impairment.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/metabolismo , Oxigênio , Testes de Função Respiratória , Consumo de Oxigênio/fisiologia , Circulação Cerebrovascular/fisiologia , Imageamento por Ressonância Magnética
9.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37176034

RESUMO

We have previously published research on the anti-viral properties of an alkaloid mixture extracted from Nuphar lutea, the major components of the partially purified mixture found by NMR analysis. These are mostly dimeric sesquiterpene thioalkaloids called thiobinupharidines and thiobinuphlutidines against the negative strand RNA measles virus (MV). We have previously reported that this extract inhibits the MV as well as its ability to downregulate several MV proteins in persistently MV-infected cells, especially the P (phospho)-protein. Based on our observation that the Nuphar extract is effective in vitro against the MV, and the immediate need that the coronavirus disease 2019 (COVID-19) pandemic created, we tested here the ability of 6,6'-dihydroxythiobinupharidine DTBN, an active small molecule, isolated from the Nuphar lutea extract, on COVID-19. As shown here, DTBN effectively inhibits SARS-CoV-2 production in Vero E6 cells at non-cytotoxic concentrations. The short-term daily administration of DTBN to infected mice delayed the occurrence of severe clinical outcomes, lowered virus levels in the lungs and improved survival with minimal changes in lung histology. The viral load on lungs was significantly reduced in the treated mice. DTBN is a pleiotropic small molecule with multiple targets. Its anti-inflammatory properties affect a variety of pathogens including SARS-CoV-2 as shown here. Its activity appears to target both pathogen specific (as suggested by docking analysis) as well as cellular proteins, such as NF-κB, PKCs, cathepsins and topoisomerase 2, that we have previously identified in our work. Thus, this combined double action of virus inhibition and anti-inflammatory activity may enhance the overall effectivity of DTBN. The promising results from this proof-of-concept in vitro and in vivo preclinical study should encourage future studies to optimize the use of DTBN and/or its molecular derivatives against this and other related viruses.


Assuntos
Alcaloides , COVID-19 , Nuphar , Camundongos , Animais , SARS-CoV-2 , Nuphar/química , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Alcaloides/química , Extratos Vegetais/farmacologia , Anti-Inflamatórios/farmacologia , Camundongos Transgênicos
10.
Neuroimage ; 262: 119440, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-35842097

RESUMO

The task-evoked positive BOLD response (PBR) to a unilateral visual hemi-field stimulation is often accompanied by robust and sustained contralateral as well as ipsilateral negative BOLD responses (NBRs) in the visual cortex. The signal characteristics and the neural and/or vascular mechanisms that underlie these two types of NBRs are not completely understood. In this paper, we investigated the properties of these two types of NBRs. We first demonstrated the linearity of both NBRs with respect to stimulus duration. Next, we showed that the hemodynamic response functions (HRFs) of the two NBRs were similar to each other, but significantly different from that of the PBR. Moreover, the subject-wise expressions of the two NBRs were tightly coupled to the degree that the correlation between the two NBRs was significantly higher than the correlation between each NBR and the PBR. However, the activation patterns of the two NBRs did not show a high level of interhemispheric spatial similarity, and the functional connectivity between them was not different than the interhemispheric functional connectivity between the NBRs and PBR. Finally, while attention did modulate both NBRs, the attention-related changes in their HRFs were similar. Our findings suggest that the two NBRs might be generated through common neural and/or vascular mechanisms involving distal/deep brain regions that project to the two hemispheres.


Assuntos
Mapeamento Encefálico , Córtex Visual , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Estimulação Luminosa/métodos , Córtex Visual/diagnóstico por imagem
11.
Anal Chem ; 94(10): 4380-4389, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35230823

RESUMO

A multi-component microarray, applying a novel analysis algorithm, was developed for quantitative evaluation of the SARS-CoV-2 vaccines' immunogenicity. The array enables simultaneous quantitation of IgG, IgM, and IgA, specific to the SARS-CoV-2 spike, receptor binding domain, and nucleocapsid proteins. The developed methodology is based on calculating an apparent immunoglobulin signal from the linear range of the fluorescent read-outs generated by scanning the microarray slides at different exposure times. A dedicated algorithm, employing a rigorous set of embedded conditions, then generates a normalized signal for each of the unique assays. Qualification of the multi-component array performance (evaluating linearity, extended dynamic-range, specificity, precision, and accuracy) was carried out with an in-house COVID-19, qRT-PCR positive serum, as well as pre-pandemic commercial negative sera. Results were compared to the WHO international standard for anti-SARS-CoV-2 immunoglobulins. Specific IgG, IgM, and IgA signals obtained by this array enabled successful discrimination between SARS-CoV-2 q-RT-PCR positive (seroconverted SARS-CoV-2 patients) and negative (naïve) samples. This array is currently used for evaluation of the humoral response to BriLife, the VSV-based Israeli vaccine during phase I/II clinical trials.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Anticorpos Antivirais , COVID-19/diagnóstico , COVID-19/prevenção & controle , Humanos , Imunoglobulina G , Imunoglobulina M , SARS-CoV-2/genética , Sensibilidade e Especificidade
12.
Arch Virol ; 167(4): 1041-1049, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35192015

RESUMO

SARS-CoV-2, the etiologic agent of the COVID-19 pandemic, emerged as the cause of a global crisis in 2019. Currently, the main method for identification of SARS-CoV-2 is a reverse transcription (RT)-PCR assay designed to detect viral RNA in oropharyngeal (OP) or nasopharyngeal (NP) samples. While the PCR assay is considered highly specific and sensitive, this method cannot determine the infectivity of the sample, which may assist in evaluation of virus transmissibility from patients and breaking transmission chains. Thus, cell-culture-based approaches such as cytopathic effect (CPE) assays are routinely employed for the identification of infectious viruses in NP/OP samples. Despite their high sensitivity, CPE assays take several days and require additional diagnostic tests in order to verify the identity of the pathogen. We have therefore developed a rapid immunofluorescence assay (IFA) for the specific detection of SARS-CoV-2 in NP/OP samples following cell culture infection. Initially, IFA was carried out on Vero E6 cultures infected with SARS-CoV-2 at defined concentrations, and infection was monitored at different time points. This test was able to yield positive signals in cultures infected with 10 pfu/ml at 12 hours postinfection (PI). Increasing the incubation time to 24 hours reduced the detectable infective dose to 1 pfu/ml. These IFA signals occur before the development of CPE. When compared to the CPE test, IFA has the advantages of specificity, rapid detection, and sensitivity, as demonstrated in this work.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Imunofluorescência , Humanos , Nasofaringe , Pandemias , RNA Viral/genética , Sensibilidade e Especificidade
13.
Anal Bioanal Chem ; 414(5): 1949-1962, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34981149

RESUMO

Recently, numerous diagnostic approaches from different disciplines have been developed for SARS-CoV-2 diagnosis to monitor and control the COVID-19 pandemic. These include MS-based assays, which provide analytical information on viral proteins. However, their sensitivity is limited, estimated to be 5 × 104 PFU/ml in clinical samples. Here, we present a reliable, specific, and rapid method for the identification of SARS-CoV-2 from nasopharyngeal (NP) specimens, which combines virus capture followed by LC-MS/MS(MRM) analysis of unique peptide markers. The capture of SARS-CoV-2 from the challenging matrix, prior to its tryptic digestion, was accomplished by magnetic beads coated with polyclonal IgG-α-SARS-CoV-2 antibodies, enabling sample concentration while significantly reducing background noise interrupting with LC-MS analysis. A sensitive and specific LC-MS/MS(MRM) analysis method was developed for the identification of selected tryptic peptide markers. The combined assay, which resulted in S/N ratio enhancement, achieved an improved sensitivity of more than 10-fold compared with previously described MS methods. The assay was validated in 29 naive NP specimens, 19 samples were spiked with SARS-CoV-2 and 10 were used as negative controls. Finally, the assay was successfully applied to clinical NP samples (n = 26) pre-determined as either positive or negative by RT-qPCR. This work describes for the first time a combined approach for immuno-magnetic viral isolation coupled with MS analysis. This method is highly reliable, specific, and sensitive; thus, it may potentially serve as a complementary assay to RT-qPCR, the gold standard test. This methodology can be applied to other viruses as well.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Cromatografia Líquida/métodos , Separação Imunomagnética/métodos , SARS-CoV-2/genética , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Anticorpos Antivirais/química , Biomarcadores/química , COVID-19/imunologia , COVID-19/virologia , Teste para COVID-19/instrumentação , Teste para COVID-19/normas , Cromatografia Líquida/instrumentação , Cromatografia Líquida/normas , Humanos , Separação Imunomagnética/instrumentação , Separação Imunomagnética/normas , Nasofaringe/virologia , Peptídeos/química , Peptídeos/imunologia , SARS-CoV-2/imunologia , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem/instrumentação , Espectrometria de Massas em Tandem/normas
14.
Arch Toxicol ; 96(3): 859-875, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35032184

RESUMO

rVSV-ΔG-SARS-CoV-2-S is a clinical stage (Phase 2) replication competent recombinant vaccine against SARS-CoV-2. To evaluate the safety profile of the vaccine, a series of non-clinical safety, immunogenicity and efficacy studies were conducted in four animal species, using multiple doses (up to 108 Plaque Forming Units/animal) and dosing regimens. There were no treatment-related mortalities or any noticeable clinical signs in any of the studies. Compared to unvaccinated controls, hematology and biochemistry parameters were unremarkable and no adverse histopathological findings. There was no detectable viral shedding in urine, nor viral RNA detected in whole blood or serum samples seven days post vaccination. The rVSV-ΔG-SARS-CoV-2-S vaccination gave rise to neutralizing antibodies, cellular immune responses, and increased lymphocytic cellularity in the spleen germinal centers and regional lymph nodes. No evidence for neurovirulence was found in C57BL/6 immune competent mice or in highly sensitive type I interferon knock-out mice. Vaccine virus replication and distribution in K18-human Angiotensin-converting enzyme 2-transgenic mice showed a gradual clearance from the vaccination site with no vaccine virus recovered from the lungs. The nonclinical data suggest that the rVSV-ΔG-SARS-CoV-2-S vaccine is safe and immunogenic. These results supported the initiation of clinical trials, currently in Phase 2.


Assuntos
Vacinas contra COVID-19/toxicidade , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacinas contra COVID-19/imunologia , Cricetinae , Feminino , Glicoproteínas de Membrana/genética , Mesocricetus , Camundongos , Camundongos Endogâmicos C57BL , Coelhos , Suínos , Vacinação , Vacinas Sintéticas/toxicidade , Proteínas do Envelope Viral/genética
15.
Microb Pathog ; 155: 104904, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33930422

RESUMO

The poly- δ- d-glutamic acid capsule of Bacillus anthracis plays a major role in this bacterium pathogenicity. Capsule synthesis relies on a 5 gene operon; capB, C, A, D and E that are regulated by acpA and acpB, that respond to the major virulence regulator - atxA. We took a genetic approach to examine the involvement of acpA and acpB in capsule production in vitro and on B. anthracis virulence in vivo. To complement the effect of the mutations on capsule accumulation in vitro, we applied our toxin independent systemic infection method to study their effects in vivo. We found that though the roles of acpA and axpB are redundant in vitro, deleting acpA had a significant effect on pathogenicity, mainly on the time to death. As expected, deletion of both acpA and acpB resulted in loss of capsule accumulation in vitro and full attenuation in vivo, indicating that capsule production depends exclusively on acpA/B regulation. To identify additional effects of acpA and acpB on pathogenicity via non-capsule related virulence pathways, we bypassed acpA/B regulation by inserting the pagA promotor upstream to the cap operon, diverting regulation directly to atxA. This resulted in restoration of capsule accumulation in vitro and virulence (in intravenous or subcutaneous inoculation) in vivo. To test for additional pXO2-based genes involved in capsule production, we cloned the pagAprom-capA-E into the chromosome of VollumΔpXO2, which restored capsule accumulation. These results indicate that of the pXO2 genes, only capA-E and acpA are required for capsule production.


Assuntos
Bacillus anthracis , Animais , Bacillus anthracis/genética , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Coelhos , Transativadores/genética , Virulência
16.
Anal Bioanal Chem ; 413(13): 3501-3510, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33768365

RESUMO

Public health experts emphasize the need for quick, point-of-care SARS-CoV-2 detection as an effective strategy for controlling virus spread. To this end, many "antigen" detection devices were developed and commercialized. These devices are mostly based on detecting SARS-CoV-2's nucleocapsid protein. Recently, alerts issued by both the FDA and the CDC raised concerns regarding the devices' tendency to exhibit false positive results. In this work, we developed a novel alternative spike-based antigen assay, comprising four high-affinity, specific monoclonal antibodies, directed against different epitopes on the spike's S1 subunit. The assay's performance was evaluated for COVID-19 detection from nasopharyngeal swabs, compared to an in-house nucleocapsid-based assay, composed of novel antibodies directed against the nucleocapsid. Detection of COVID-19 was carried out in a cohort of 284 qRT-PCR positive and negative nasopharyngeal swab samples. The time resolved fluorescence (TRF) ELISA spike assay displayed very high specificity (99%) accompanied with a somewhat lower sensitivity (66% for Ct < 25), compared to the nucleocapsid ELISA assay which was more sensitive (85% for Ct < 25) while less specific (87% specificity). Despite being outperformed by qRT-PCR, we suggest that there is room for such tests in the clinical setting, as cheap and rapid pre-screening tools. Our results further suggest that when applying antigen detection, one must consider its intended application (sensitivity vs specificity), taking into consideration that the nucleocapsid might not be the optimal target. In this regard, we propose that a combination of both antigens might contribute to the validity of the results. Schematic representation of sample collection and analysis. The figure was created using BioRender.com.


Assuntos
Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , Proteínas do Nucleocapsídeo de Coronavírus/análise , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/análise , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Fosfoproteínas/análise , Sensibilidade e Especificidade , Manejo de Espécimes
17.
J Neurosci ; 37(6): 1518-1531, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28069927

RESUMO

Brain imaging techniques that use vascular signals to map changes in neuronal activity rely on the coupling between electrophysiology and hemodynamics, a phenomenon referred to as "neurovascular coupling" (NVC). It is unknown whether this relationship remains reliable under altered brain states associated with acetylcholine (ACh) levels, such as attention and arousal and in pathological conditions such as Alzheimer's disease. We therefore assessed the effects of varying ACh tone on whisker-evoked NVC responses in rat barrel cortex, measured by cerebral blood flow (CBF) and neurophysiological recordings (local field potentials, LFPs). We found that acutely enhanced ACh tone significantly potentiated whisker-evoked CBF responses through muscarinic ACh receptors and concurrently facilitated neuronal responses, as illustrated by increases in the amplitude and power in high frequencies of the evoked LFPs. However, the cellular identity of the activated neuronal network within the responsive barrel was unchanged, as characterized by c-Fos upregulation in pyramidal cells and GABA interneurons coexpressing vasoactive intestinal polypeptide. In contrast, chronic ACh deprivation hindered whisker-evoked CBF responses and the amplitude and power in most frequency bands of the evoked LFPs and reduced the rostrocaudal extent and area of the activated barrel without altering its identity. Correlations between LFP power and CBF, used to estimate NVC, were enhanced under high ACh tone and disturbed significantly by ACh depletion. We conclude that ACh is not only a facilitator but also a prerequisite for the full expression of sensory-evoked NVC responses, indicating that ACh may alter the fidelity of hemodynamic signals in assessing changes in evoked neuronal activity.SIGNIFICANCE STATEMENT Neurovascular coupling, defined as the tight relationship between activated neurons and hemodynamic responses, is a fundamental brain function that underlies hemodynamic-based functional brain imaging techniques. However, the impact of altered brain states on this relationship is largely unknown. We therefore investigated how acetylcholine (ACh), known to drive brain states of attention and arousal and to be deficient in pathologies such as Alzheimer's disease, would alter neurovascular coupling responses to sensory stimulation. Whereas acutely increased ACh enhanced neuronal responses and the resulting hemodynamic signals, chronic loss of cholinergic input resulted in dramatic impairments in both types of sensory-evoked signals. We conclude that ACh is not only a potent modulator but also a requirement for the full expression of sensory-evoked neurovascular coupling responses.


Assuntos
Acetilcolina/fisiologia , Circulação Cerebrovascular/fisiologia , Acoplamento Neurovascular/fisiologia , Receptores Nicotínicos/fisiologia , Vibrissas/fisiologia , Animais , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Circulação Cerebrovascular/efeitos dos fármacos , Masculino , Acoplamento Neurovascular/efeitos dos fármacos , Antagonistas Nicotínicos/farmacologia , Estimulação Física/métodos , Ratos , Ratos Sprague-Dawley , Vibrissas/efeitos dos fármacos
18.
Neuroimage ; 164: 67-99, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28461061

RESUMO

The capacity of functional MRI (fMRI) to resolve cortical columns depends on several factors. These include the spatial scale of the columnar pattern, the point-spread of the fMRI response, the voxel size, and the signal-to-noise ratio (SNR) considering thermal and physiological noise. However, it remains unknown how these factors combine, and what is the voxel size that optimizes fMRI of cortical columns. Here we combine current knowledge into a quantitative model of fMRI of realistic patterns of cortical columns with different spatial scales and degrees of irregularity. We compare different approaches for identifying patterns of cortical columns, including univariate and multivariate based detection, multi-voxel pattern analysis (MVPA) based decoding, and high-resolution imaging and reconstruction of the pattern of cortical columns. We present the dependence of the performance of each approach on the parameters of the imaged pattern as well as those of the data acquisition. In addition, we predict voxel sizes that optimize fMRI of cortical columns under various scenarios. We found that all measures associated with multivariate detection and decoding could be approximately calculated from a measure we termed "multivariate contrast-to-noise ratio" (mv-CNR), which is a function of the contrast-to-noise ratio (CNR) and number of voxels. Furthermore, mv-CNR implied that the optimal voxel width for detection and decoding is independent of changes in response amplitude, SNR and imaged volume that are not caused by changes in voxel size. For regular patterns, optimal voxel widths for detection, decoding and imaging/reconstructing the pattern of cortical columns were approximately half the main cycle length of the organization. Optimal voxel widths for irregular patterns were less dependent on the main cycle length, and differed between univariate detection, multivariate detection and decoding, and reconstruction. We compared the effects of different factors of Gradient Echo fMRI at 3 Tesla (T), Gradient Echo fMRI at 7T, and Spin-Echo fMRI at 7T on the detection, decoding, and reconstruction measures considered and found that in all cases the width of the fMRI point-spread had the most significant effect. In contrast, different response amplitudes and noise characteristics played a relatively minor role. We recommend specific voxel widths for optimal univariate detection, for multivariate detection and decoding, and for high-resolution imaging of cortical columns under these three data-acquisition scenarios. Our study supports the planning, optimization, and interpretation of high-resolution fMRI of cortical columns and the decoding of information conveyed by these columns.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebral/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Humanos
19.
Neuroimage ; 164: 32-47, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28882632

RESUMO

Previous attempts at characterizing the spatial specificity of the blood oxygenation level dependent functional MRI (BOLD fMRI) response by estimating its point-spread function (PSF) have conventionally relied on retinotopic spatial representations of visual stimuli in area V1. Consequently, their estimates were confounded by the width and scatter of receptive fields of V1 neurons. Here, we circumvent these limits by instead using the inherent cortical spatial organization of ocular dominance columns (ODCs) to determine the PSF for both Gradient Echo (GE) and Spin Echo (SE) BOLD imaging at 7 Tesla. By applying Markov chain Monte Carlo sampling on a probabilistic generative model of imaging ODCs, we quantified the PSFs that best predict the spatial structure and magnitude of differential ODCs' responses. Prior distributions for the ODC model parameters were determined by analyzing published data of cytochrome oxidase patterns from post-mortem histology of human V1 and of neurophysiological ocular dominance indices. The average PSF full-widths at half-maximum obtained from differential ODCs' responses following the removal of voxels influenced by contributions from macroscopic blood vessels were 0.86 mm (SE) and 0.99 mm (GE). Our results provide a quantitative basis for the spatial specificity of BOLD fMRI at ultra-high fields, which can be used for planning and interpretation of high-resolution differential fMRI of fine-scale cortical organizations.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Humanos , Cadeias de Markov , Método de Monte Carlo
20.
Artigo em Inglês | MEDLINE | ID: mdl-29661872

RESUMO

Treatment of anthrax is challenging, especially during the advanced stages of the disease. Recently, the Centers for Disease Control and Prevention (CDC) updated its recommendations for postexposure prophylaxis and treatment of exposed populations (before and after symptom onset). These recommendations distinguished, for the first time, between systemic disease with and without meningitis, a common and serious complication of anthrax. The CDC considers all systemic cases meningeal unless positively proven otherwise. The treatment of patients suffering from systemic anthrax with suspected or confirmed meningitis includes the combination of three antibiotics, i.e., a fluoroquinolone (levofloxacin or ciprofloxacin), a ß-lactam (meropenem or imipenem), and a protein synthesis inhibitor (linezolid or clindamycin). In addition, treatment with an antitoxin (anti-protective antigen antibodies) and dexamethasone should be applied. Since the efficacy of most of these treatments has not been demonstrated, especially in animal meningitis models, we developed an anthrax meningitis model in rabbits and tested several of these recommendations. We demonstrated that, in this model, ciprofloxacin, linezolid, and meropenem were ineffective as single treatments, while clindamycin was highly effective. Furthermore, combined treatments of ciprofloxacin and linezolid or ciprofloxacin and dexamethasone failed in treating rabbits with meningitis. We demonstrated that dexamethasone actually hindered blood-brain barrier penetration by antibiotics, reducing the effectiveness of antibiotic treatment of anthrax meningitis in this rabbit model.


Assuntos
Antraz/tratamento farmacológico , Antibacterianos/uso terapêutico , Antitoxinas/uso terapêutico , Bacillus anthracis/efeitos dos fármacos , Meningites Bacterianas/tratamento farmacológico , Animais , Antraz/patologia , Sistema Nervoso Central/microbiologia , Sistema Nervoso Central/patologia , Ciprofloxacina/uso terapêutico , Clindamicina/uso terapêutico , Dexametasona/uso terapêutico , Modelos Animais de Doenças , Combinação de Medicamentos , Imipenem/uso terapêutico , Levofloxacino/uso terapêutico , Linezolida/uso terapêutico , Meningites Bacterianas/microbiologia , Meningites Bacterianas/patologia , Meropeném/uso terapêutico , Coelhos , Falha de Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA