Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 24(20): 5373-5378, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29205555

RESUMO

The correlation between oxidation state and Lewis acidity is well established for hexaquairon complexes in the +II and +III oxidation state, in which the higher oxidation state leads to a lower pKa for the bound H2 O ligand. This article addresses the Lewis acidity of the oxoiron(IV) complex [FeIV (O)(TMC)(OH2 )]2+ (1-OH2 ; TMC=1,4,8,11-tetramethylcyclam) by determining the pKa of the H2 O ligand. We establish that 1-OH2 has a pKa of 6.9±0.5, a value that falls in between those found for [FeIII (OH2 )6 ]3+ and [FeII (OH2 )6 ]2+ . This intermediate value can be readily rationalized by the presence of the highly basic oxide ligand that mitigates the Lewis acidity of the iron(IV) center. Although the oxo ligand occupies only one position in 1-OH2 , anti to all four methyl groups that protrude from the same face of the nonplanar TMC ligand, its conjugate base 1-OH exists as a mixture of syn and anti tautomers, which are related by proton transfer between the oxo and the hydroxo ligands.

2.
J Phys Chem A ; 120(10): 1661-8, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26909527

RESUMO

Flexible acyclic alcohols with one to five hydroxyl groups were bound to a chloride anion and these complexes were interrogated by negative ion photoelectron spectroscopy and companion density functional theory computations. The resulting vertical detachment energies are reproduced on average to 0.10 eV by M06-2X/aug-cc-pVTZ predictions and range from 4.45-5.96 eV. These values are 0.84-2.35 eV larger than the adiabatic detachment energy of Cl(-) as a result of the larger hydrogen bond networks in the bigger polyols. Adiabatic detachment energies of the alcohol-Cl(-) clusters are more difficult to determine both experimentally and computationally. This is due to the large geometry changes that occur upon photodetachment and the large bond dissociation energy of H-Cl which enables the resulting chlorine atom to abstract a hydrogen from any of the methylene (CH2) or methine (CH) positions. Both ionic and nonionic hydrogen bonds (i.e., OH···Cl(-) and OH···OH···Cl(-)) form in the larger polyols complexes and are found to be energetically comparable. Subtle structural differences, consequently can lead to the formation of different types of hydrogen bonds, and maximizing the ionic ones is not always preferred. Solution equilibrium binding constants between the alcohols and tetrabutylammonium chloride (TBACl) in acetonitrile at -24.2, +22.0, and +53.6 °C were also determined. The free energies of association are nearly identical for all of the substrates (i.e., ΔG° = -2.8 ± 0.7 kcal mol(-1)). Compensating enthalpy and entropy values reveal, contrary to expectation and the intrinsic gas-phase preferences, that the bigger systems with more hydroxyl groups are entropically favored and enthalpically disfavored relative to the smaller species. This suggests that more solvent molecules are released upon binding TBACl to alcohols with more hydroxyl groups and is consistent with the measured negative heat capacities. These quantities increase with molecular complexity of the substrate, however, contrary to common interpretation of these values.

3.
J Am Chem Soc ; 137(24): 7686-91, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26030345

RESUMO

Cyanobacterial aldehyde-deformylating oxygenase (cADO) converts long-chain fatty aldehydes to alkanes via a proposed diferric-peroxo intermediate that carries out the oxidative deformylation of the substrate. Herein, we report that the synthetic iron(III)-peroxo complex [Fe(III)(η(2)-O2)(TMC)](+) (TMC = tetramethylcyclam) causes a similar transformation in the presence of a suitable H atom donor, thus serving as a functional model for cADO. Mechanistic studies suggest that the H atom donor can intercept the incipient alkyl radical formed in the oxidative deformylation step in competition with the oxygen rebound step typically used by most oxygenases for forming C-O bonds.


Assuntos
Aldeídos/química , Alcanos/química , Cianobactérias/enzimologia , Ácidos Graxos/química , Compostos Férricos/química , Oxigenases/metabolismo , Aldeídos/metabolismo , Alcanos/metabolismo , Cianobactérias/química , Ácidos Graxos/metabolismo , Modelos Moleculares , Oxigênio/química , Oxigenases/química
4.
J Am Chem Soc ; 135(25): 9525-30, 2013 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-23725455

RESUMO

Electron-withdrawing trifluoromethyl groups were characterized in combination with hydrogen-bond interactions in three polyols (i.e., CF3CH(OH)CH2CH(OH)CF3, 1; (CF3)2C(OH)C(OH)(CF3)2, 2; ((CF3)2C(OH)CH2)2CHOH, 3) by pKa measurements in DMSO and H2O, negative ion photoelectron spectroscopy and binding constant determinations with Cl(-). Their catalytic behavior in several reactions were also examined and compared to a Brønsted acid (HOAc) and a commonly employed thiourea ((3,5-(CF3)2C6H3NH)2CS). The combination of inductive stabilization and hydrogen bonds was found to afford potent acids which are effective catalysts. It also appears that hydrogen bonds can transmit the inductive effect over distance even in an aqueous environment, and this has far reaching implications.


Assuntos
Ácidos/química , Álcoois/química , Ânions/química , Catálise , Elétrons , Ligação de Hidrogênio , Estrutura Molecular
5.
J Am Chem Soc ; 135(47): 17919-24, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24188017

RESUMO

We report quantifying the strengths of different types of hydrogen bonds in hydrogen-bond networks (HBNs) via measurement of the adiabatic electron detachment energy of the conjugate base of a small covalent polyol model compound (i.e., (HOCH2CH2CH(OH)CH2)2CHOH) in the gas phase and the pKa of the corresponding acid in DMSO. The latter result reveals that the hydrogen bonds to the charged center and those that are one solvation shell further away (i.e., primary and secondary) provide 5.3 and 2.5 pKa units of stabilization per hydrogen bond in DMSO. Computations indicate that these energies increase to 8.4 and 3.9 pKa units in benzene and that the total stabilizations are 16 (DMSO) and 25 (benzene) pKa units. Calculations on a larger linear heptaol (i.e., (HOCH2CH2CH(OH)CH2CH(OH)CH2)2CHOH) reveal that the terminal hydroxyl groups each contribute 0.6 pKa units of stabilization in DMSO and 1.1 pKa units in benzene. All of these results taken together indicate that the presence of a charged center can provide a powerful energetic driving force for enzyme catalysis and conformational changes such as in protein folding due to multiple hydrogen bonds in a HBN.

6.
J Phys Chem A ; 117(38): 9252-8, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-24011262

RESUMO

Like-charge ion pairing is commonly observed in protein structures and plays a significant role in biochemical processes. Density functional calculations combined with the conductor-like polarizable continuum model were employed to study the formation possibilities of doubly charged noncovalently linked complexes of a series of model compounds and amino acids in the gas phase and in solution. Hydrogen bond interactions were found to offset the Coulombic repulsion such that cation-cation clusters are minima on the potential energy surfaces and neither counterions nor solvent molecules are needed to hold them together. In the gas phase the dissociation energies are exothermic, and the separation barriers span from 1.7 to 15.6 kcal mol(-1). Liquid-phase computations indicate that the separation enthalpies of the cation-cation complexes become endothermic in water and nonpolar solvents with dielectric constants of ≥7 (i.e., the value for THF). These results reveal that electrostatically defying noncovalent complexes of like-charged ions can overcome their Coulombic repulsion even in low-polarity environments.

7.
J Am Chem Soc ; 134(25): 10646-50, 2012 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-22656241

RESUMO

The pK(a) of an acyclic aliphatic heptaol ((HOCH(2)CH(2)CH(OH)CH(2))(3)COH) was measured in DMSO, and its gas-phase acidity is reported as well. This tertiary alcohol was found to be 10(21) times more acidic than tert-butyl alcohol in DMSO and an order of magnitude more acidic than acetic acid (i.e., pK(a) = 11.4 vs 12.3). This can be attributed to a 21.9 kcal mol(-1) stabilization of the charged oxygen center in the conjugate base by three hydrogen bonds and another 6.3 kcal mol(-1) stabilization resulting from an additional three hydrogen bonds between the uncharged primary and secondary hydroxyl groups. Charge delocalization by both the first and second solvation shells may be used to facilitate enzymatic reactions. Acidity constants of a series of polyols were also computed, and the combination of hydrogen-bonding and electron-withdrawing substituents was found to afford acids that are predicted to be extremely acidic in DMSO (i.e., pK(a) < 0). These hydrogen bond enhanced acids represent an attractive class of Brønsted acid catalysts.


Assuntos
Ácidos/química , Álcalis/química , Dimetil Sulfóxido/química , Acilação , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Estrutura Molecular , Transição de Fase
8.
J Am Chem Soc ; 134(4): 2094-9, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22239658

RESUMO

Hydrogen bond interactions in small covalent model compounds (i.e., deprotonated polyhydroxy alcohols) were measured by negative ion photoelectron spectroscopy. The experimentally determined vertical and adiabatic electron detachment energies for (HOCH(2)CH(2))(2)CHO(-)(2a), (HOCH(2)CH(2))(3)CO(-) (3a), and (HOCH(2)CH(2)CH(OH)CH(2))(3)CO(-) (4a)reveal that hydrogen-bonded networks can provide enormous stabilizations and that a single charge center not only can be stabilized by up to three hydrogen bonds but also can increase the interaction energy between noncharged OH groups by 5.8 kcal mol(-1) or more per hydrogen bond. This can lead to pK(a) values that are very different from those in water and can provide some of the impetus for catalytic processes.


Assuntos
Álcoois/química , Álcoois/síntese química , Ligação de Hidrogênio , Estrutura Molecular , Teoria Quântica
9.
J Am Chem Soc ; 134(41): 16944-7, 2012 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-23030516

RESUMO

Nature employs flexible molecules to bind anions in a variety of physiologically important processes whereas supramolecular chemists have been designing rigid substrates that minimize or eliminate intramolecular hydrogen bond interactions to carry out anion recognition. Herein, the association of a flexible polyhydroxy alkane with chloride ion is described and the bound receptor is characterized by infrared and photoelectron spectroscopy in the gas phase, computations, and its binding constant as a function of temperature in acetonitrile.


Assuntos
Polímeros/química , Ânions/química , Cloretos/química , Ligação de Hidrogênio , Conformação Molecular , Teoria Quântica
10.
ACS Chem Biol ; 12(11): 2849-2857, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-28990753

RESUMO

Peptidoglycan (PG) is a mesh-like heteropolymer made up of glycan chains cross-linked by short peptides and is the major scaffold of eubacterial cell walls, determining cell shape, size, and chaining. This structure, which is required for growth and survival, is located outside of the cytoplasmic membrane of bacterial cells, making it highly accessible to antibiotics. Penicillin-binding proteins (PBPs) are essential for construction of PG and perform transglycosylase activities to generate the glycan strands and transpeptidation to cross-link the appended peptides. The ß-lactam antibiotics, which are among the most clinically effective antibiotics for the treatment of bacterial infections, inhibit PBP transpeptidation, ultimately leading to cell lysis. Despite this importance, the discrete functions of individual PBP homologues have been difficult to determine. These major gaps in understanding of PBP activation and macromolecular interactions largely result from a lack of tools to assess the functional state of specific PBPs in bacterial cells. We have identified ß-lactones as a privileged scaffold for the generation of PBP-selective probes and utilized these compounds for imaging of the essential proteins, PBP2x and PBP2b, in Streptococcus pneumoniae. We demonstrated that while PBP2b activity is restricted to a ring surrounding the division sites, PBP2x activity is present both at the septal center and at the surrounding ring. These spatially separate regions of PBP2x activity could not be detected by previous activity-based approaches, which highlights a critical strength of our PBP-selective imaging strategy.


Assuntos
Proteínas de Bactérias/análise , Corantes Fluorescentes/química , Lactonas/química , Proteínas de Ligação às Penicilinas/análise , Streptococcus pneumoniae/química , Imagem Óptica/métodos , Bibliotecas de Moléculas Pequenas/química , Streptococcus pneumoniae/citologia
11.
Chem Commun (Camb) ; 49(99): 11674-6, 2013 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-24189586

RESUMO

Anion recognition of two flexible diols in different solvents and binary mixtures were examined. Binding constants (K) in CD3CN and CDCl3 are surprisingly similar, and CD3CN-solvent mixtures led to reduced values of K that are smaller than in either pure solvent. A surprising U-shaped dependence is observed.


Assuntos
Ânions/química , Sais/química , Solventes/química , Cloretos/química , Cianetos/química , Compostos de Amônio Quaternário/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA