Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 631(8020): 432-438, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38898279

RESUMO

When mRNAs have been transcribed and processed in the nucleus, they are exported to the cytoplasm for translation. This export is mediated by the export receptor heterodimer Mex67-Mtr2 in the yeast Saccharomyces cerevisiae (TAP-p15 in humans)1,2. Interestingly, many long non-coding RNAs (lncRNAs) also leave the nucleus but it is currently unclear why they move to the cytoplasm3. Here we show that antisense RNAs (asRNAs) accelerate mRNA export by annealing with their sense counterparts through the helicase Dbp2. These double-stranded RNAs (dsRNAs) dominate export compared with single-stranded RNAs (ssRNAs) because they have a higher capacity and affinity for the export receptor Mex67. In this way, asRNAs boost gene expression, which is beneficial for cells. This is particularly important when the expression program changes. Consequently, the degradation of dsRNA, or the prevention of its formation, is toxic for cells. This mechanism illuminates the general cellular occurrence of asRNAs and explains their nuclear export.


Assuntos
Transporte Ativo do Núcleo Celular , Núcleo Celular , Regulação Fúngica da Expressão Gênica , Transporte de RNA , RNA Antissenso , RNA de Cadeia Dupla , RNA Mensageiro , Saccharomyces cerevisiae , Núcleo Celular/metabolismo , Citoplasma/metabolismo , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , RNA Antissenso/metabolismo , RNA Antissenso/genética , RNA de Cadeia Dupla/metabolismo , RNA de Cadeia Dupla/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
2.
Development ; 148(3)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33462115

RESUMO

Fine-tuned gene expression is crucial for neurodevelopment. The gene expression program is tightly controlled at different levels, including RNA decay. N6-methyladenosine (m6A) methylation-mediated degradation of RNA is essential for brain development. However, m6A methylation impacts not only RNA stability, but also other RNA metabolism processes. How RNA decay contributes to brain development is largely unknown. Here, we show that Exosc10, a RNA exonuclease subunit of the RNA exosome complex, is indispensable for forebrain development. We report that cortical cells undergo overt apoptosis, culminating in cortical agenesis upon conditional deletion of Exosc10 in mouse cortex. Mechanistically, Exosc10 directly binds and degrades transcripts of the P53 signaling-related genes, such as Aen and Bbc3. Overall, our findings suggest a crucial role for Exosc10 in suppressing the P53 pathway, in which the rapid turnover of the apoptosis effectors Aen and Bbc3 mRNAs is essential for cell survival and normal cortical histogenesis.


Assuntos
Sobrevivência Celular/fisiologia , Exossomos/genética , Exossomos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Prosencéfalo/crescimento & desenvolvimento , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose , Proteínas Reguladoras de Apoptose , Biologia Computacional , Exorribonucleases/genética , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Prosencéfalo/patologia , RNA/metabolismo , Estabilidade de RNA , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor
3.
Genes Dev ; 30(11): 1300-12, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27257214

RESUMO

Motile multiciliated cells (MCCs) have critical roles in respiratory health and disease and are essential for cleaning inhaled pollutants and pathogens from airways. Despite their significance for human disease, the transcriptional control that governs multiciliogenesis remains poorly understood. Here we identify TP73, a p53 homolog, as governing the program for airway multiciliogenesis. Mice with TP73 deficiency suffer from chronic respiratory tract infections due to profound defects in ciliogenesis and complete loss of mucociliary clearance. Organotypic airway cultures pinpoint TAp73 as necessary and sufficient for basal body docking, axonemal extension, and motility during the differentiation of MCC progenitors. Mechanistically, cross-species genomic analyses and complete ciliary rescue of knockout MCCs identify TAp73 as the conserved central transcriptional integrator of multiciliogenesis. TAp73 directly activates the key regulators FoxJ1, Rfx2, Rfx3, and miR34bc plus nearly 50 structural and functional ciliary genes, some of which are associated with human ciliopathies. Our results position TAp73 as a novel central regulator of MCC differentiation.


Assuntos
Diferenciação Celular/genética , Cílios/genética , Regulação da Expressão Gênica/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Mucosa Respiratória/citologia , Animais , Células Cultivadas , Técnicas de Inativação de Genes , Camundongos , Infecções Respiratórias/genética , Infecções Respiratórias/fisiopatologia
4.
Plant Physiol ; 189(2): 490-515, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35302599

RESUMO

After reaching the stigma, pollen grains germinate and form a pollen tube that transports the sperm cells to the ovule. Due to selection pressure between pollen tubes, pollen grains likely evolved mechanisms to quickly adapt to temperature changes to sustain elongation at the highest possible rate. We investigated these adaptions in tobacco (Nicotiana tabacum) pollen tubes grown in vitro under 22°C and 37°C by a multi-omics approach including lipidomic, metabolomic, and transcriptomic analysis. Both glycerophospholipids and galactoglycerolipids increased in saturated acyl chains under heat stress (HS), while triacylglycerols (TGs) changed less in respect to desaturation but increased in abundance. Free sterol composition was altered, and sterol ester levels decreased. The levels of sterylglycosides and several sphingolipid classes and species were augmented. Most amino acid levels increased during HS, including the noncodogenic amino acids γ-amino butyrate and pipecolate. Furthermore, the sugars sedoheptulose and sucrose showed higher levels. Also, the transcriptome underwent pronounced changes with 1,570 of 24,013 genes being differentially upregulated and 813 being downregulated. Transcripts coding for heat shock proteins and many transcriptional regulators were most strongly upregulated but also transcripts that have so far not been linked to HS. Transcripts involved in TG synthesis increased, while the modulation of acyl chain desaturation seemed not to be transcriptionally controlled, indicating other means of regulation. In conclusion, we show that tobacco pollen tubes are able to rapidly remodel their lipidome under HS likely by post-transcriptional and/or post-translational regulation.


Assuntos
Nicotiana , Tubo Polínico , Resposta ao Choque Térmico/genética , Lipídeos , Tubo Polínico/genética , Tubo Polínico/metabolismo , Esteróis/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
5.
Oral Dis ; 29(1): 116-127, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33872434

RESUMO

OBJECTIVE: This study was designed to identify changes in the expression of proteins occurring during the progression of oral squamous cell carcinoma (OSCC) and to validate their impact on patient prognosis. MATERIALS AND METHODS: The human OSCC cell line UPCI-SCC-040 was treated in vitro with TGF-ß1, and transcriptome analysis of differentially expressed genes (DEGs) revealed putative candidates relative to untreated cells. The respective protein expression levels of the most important genes were immunohistochemically validated on a tissue microarray (TMA) containing tissue samples from 39 patients with OSCC and were correlated with disease-free survival (DFS) as the primary clinical endpoint. RESULTS: Our univariate Cox proportional hazard regression (CR) analysis revealed significant correlations among positive N stage (local lymph node metastasis, p = .04), stearoyl-CoA desaturase-1 (p < .01), sclerostin (p = .01), and CD137L expression (p = .04) and DFS. Stearoyl-CoA desaturase-1 and sclerostin remained the main prognostic factors (p < .01) in the multiple CR model. CONCLUSION: We identified changes in differentially expressed genes during OSCC progression in vitro and translated the impact of the most deregulated genes on patient prognosis. Stearoyl-CoA desaturase-1 and sclerostin acted as independent prognostic factors in OSCC and could also be interesting candidates for new cancer targeted therapeutic approaches.


Assuntos
Neoplasias Bucais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Biomarcadores Tumorais/genética , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Estearoil-CoA Dessaturase/genética
6.
J Transl Med ; 20(1): 413, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36076207

RESUMO

BACKGROUND: Next generation sequencing (NGS) of human specimen is expected to improve prognosis and diagnosis of human diseases, but its sensitivity urges for well-defined sampling and standardized protocols in order to avoid error-prone conclusions. METHODS: In this study, large volumes of pooled human cerebrospinal fluid (CSF) were used to prepare RNA from human CSF-derived extracellular vesicles (EV) and from whole CSF, as well as from whole human serum and serum-derived EV. In all four fractions small and long coding and non-coding RNA expression was analyzed with NGS and transcriptome analyses. RESULTS: We show, that the source of sampling has a large impact on the acquired NGS pattern, and differences between small RNA fractions are more distinct than differences between long RNA fractions. The highest percentual discrepancy between small RNA fractions and the second highest difference between long RNA fractions is seen in the comparison of CSF-derived EV and whole CSF. Differences between miR (microRNA) and mRNA fractions of EV and the respective whole body fluid have the potential to affect different cellular and biological processes. I.e. a comparison of miR in both CSF fractions reveals that miR from EV target four transcripts sets involved in neurobiological processes, whereas eight others, also involved in neurobiological processes are targeted by miR found in whole CSF only. Likewise, three mRNAs sets derived from CSF-derived EV are associated with neurobiological and six sets with mitochondrial metabolism, whereas no such mRNA transcript sets are found in the whole CSF fraction. We show that trace amounts of blood-derived contaminations of CSF can bias RNA-based CSF diagnostics. CONCLUSIONS: This study shows that the composition of small and long RNA differ significantly between whole body fluid and its respective EV fraction and thus can affect different cellular and molecular functions. Trace amounts of blood-derived contaminations of CSF can bias CSF analysis. This has to be considered for a meaningful RNA-based diagnostics. Our data imply a transport of EV from serum to CSF across the blood-brain barrier.


Assuntos
Fenômenos Biológicos , Vesículas Extracelulares , MicroRNAs , Vesículas Extracelulares/genética , Humanos , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma/genética
7.
Circ Res ; 126(1): 6-24, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31730408

RESUMO

RATIONALE: Genome editing by CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 is evolving rapidly. Recently, second-generation CRISPR/Cas9 activation systems based on nuclease inactive dead (d)Cas9 fused to transcriptional transactivation domains were developed for directing specific guide (g)RNAs to regulatory regions of any gene of interest, to enhance transcription. The application of dCas9 to activate cardiomyocyte transcription in targeted genomic loci in vivo has not been demonstrated so far. OBJECTIVE: We aimed to develop a mouse model for cardiomyocyte-specific, CRISPR-mediated transcriptional modulation, and to demonstrate its versatility by targeting Mef2d and Klf15 loci (2 well-characterized genes implicated in cardiac hypertrophy and homeostasis) for enhanced transcription. METHODS AND RESULTS: A mouse model expressing dCas9 with the VPR transcriptional transactivation domains under the control of the Myh (myosin heavy chain) 6 promoter was generated. These mice innocuously expressed dCas9 exclusively in cardiomyocytes. For initial proof-of-concept, we selected Mef2d, which when overexpressed, led to hypertrophy and heart failure, and Klf15, which is lowly expressed in the neonatal heart. The most effective gRNAs were first identified in fibroblast (C3H/10T1/2) and myoblast (C2C12) cell lines. Using an improved triple gRNA expression system (TRISPR [triple gRNA expression construct]), up to 3 different gRNAs were transduced simultaneously to identify optimal conditions for transcriptional activation. For in vivo delivery of the validated gRNA combinations, we employed systemic administration via adeno-associated virus serotype 9. On gRNA delivery targeting Mef2d expression, we recapitulated the anticipated cardiac hypertrophy phenotype. Using gRNA targeting Klf15, we could enhance its transcription significantly, although Klf15 is physiologically silenced at that time point. We further confirmed specific and robust dCas9VPR on-target effects. CONCLUSIONS: The developed mouse model permits enhancement of gene expression by using endogenous regulatory genomic elements. Proof-of-concept in 2 independent genomic loci suggests versatile applications in controlling transcription in cardiomyocytes of the postnatal heart.


Assuntos
Sistemas CRISPR-Cas , Regulação da Expressão Gênica , Miocárdio/metabolismo , Ativação Transcricional , Animais , Linhagem Celular , Dependovirus/genética , Fibroblastos/metabolismo , Regulação da Expressão Gênica/genética , Genes Sintéticos , Vetores Genéticos/genética , Coração/crescimento & desenvolvimento , Fatores de Transcrição Kruppel-Like/biossíntese , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição MEF2/biossíntese , Fatores de Transcrição MEF2/genética , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Cadeias Pesadas de Miosina/genética , Regiões Promotoras Genéticas , Domínios Proteicos , RNA Polimerase III/genética , RNA Guia de Cinetoplastídeos/genética
8.
J Neurochem ; 154(6): 647-661, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32233089

RESUMO

SUMOylation is a dynamic post-translational protein modification that primarily takes place in cell nuclei, where it plays a key role in multiple DNA-related processes. In neurons, the SUMOylation-dependent control of a subset of neuronal transcription factors is known to regulate various aspects of nerve cell differentiation, development, and function. In an unbiased screen for endogenous SUMOylation targets in the developing mouse brain, based on a His6 -HA-SUMO1 knock-in mouse line, we previously identified the transcription factor Zinc finger and BTB domain-containing 20 (Zbtb20) as a new SUMO1-conjugate. We show here that the three key SUMO paralogues SUMO1, SUMO2, and SUMO3 can all be conjugated to Zbtb20 in vitro in HEK293FT cells, and we confirm the SUMOylation of Zbtb20 in vivo in mouse brain. Using primary hippocampal neurons from wild-type and Zbtb20 knock-out (KO) mice as a model system, we then demonstrate that the expression of Zbtb20 is required for proper nerve cell development and neurite growth and branching. Furthermore, we show that the SUMOylation of Zbtb20 is essential for its function in this context, and provide evidence indicating that SUMOylation affects the Zbtb20-dependent transcriptional profile of neurons. Our data highlight the role of SUMOylation in the regulation of neuronal transcription factors that determine nerve cell development, and they demonstrate that key functions of the transcription factor Zbtb20 in neuronal development and neurite growth are under obligatory SUMOylation control.


Assuntos
Sistema Nervoso/crescimento & desenvolvimento , Sumoilação/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Animais , Sobrevivência Celular , Perfilação da Expressão Gênica , Técnicas de Introdução de Genes , Células HEK293 , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuritos/fisiologia , Neurônios/metabolismo , Cultura Primária de Células , RNA/biossíntese , RNA/genética
9.
PLoS Pathog ; 14(1): e1006802, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29357384

RESUMO

Increasing evidence indicates that microRNAs (miRNAs) are contributing factors to neurodegeneration. Alterations in miRNA signatures have been reported in several neurodegenerative dementias, but data in prion diseases are restricted to ex vivo and animal models. The present study identified significant miRNA expression pattern alterations in the frontal cortex and cerebellum of sporadic Creutzfeldt-Jakob disease (sCJD) patients. These changes display a highly regional and disease subtype-dependent regulation that correlates with brain pathology. We demonstrate that selected miRNAs are enriched in sCJD isolated Argonaute(Ago)-binding complexes in disease, indicating their incorporation into RNA-induced silencing complexes, and further suggesting their contribution to disease-associated gene expression changes. Alterations in the miRNA-mRNA regulatory machinery and perturbed levels of miRNA biogenesis key components in sCJD brain samples reported here further implicate miRNAs in sCJD gene expression (de)regulation. We also show that a subset of sCJD-altered miRNAs are commonly changed in Alzheimer's disease, dementia with Lewy bodies and fatal familial insomnia, suggesting potential common mechanisms underlying these neurodegenerative processes. Additionally, we report no correlation between brain and cerebrospinal fluid (CSF) miRNA-profiles in sCJD, indicating that CSF-miRNA profiles do not faithfully mirror miRNA alterations detected in brain tissue of human prion diseases. Finally, utilizing a sCJD MM1 mouse model, we analyzed the miRNA deregulation patterns observed in sCJD in a temporal manner. While fourteen sCJD-related miRNAs were validated at clinical stages, only two of those were changed at early symptomatic phase, suggesting that the miRNAs altered in sCJD may contribute to later pathogenic processes. Altogether, the present work identifies alterations in the miRNA network, biogenesis and miRNA-mRNA silencing machinery in sCJD, whereby contributions to disease mechanisms deserve further investigation.


Assuntos
Síndrome de Creutzfeldt-Jakob/classificação , Síndrome de Creutzfeldt-Jakob/genética , MicroRNAs/genética , Interferência de RNA , Transcriptoma , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/metabolismo , Encéfalo/patologia , Estudos de Casos e Controles , Síndrome de Creutzfeldt-Jakob/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , MicroRNAs/biossíntese , Pessoa de Meia-Idade
10.
BMC Bioinformatics ; 19(1): 54, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29444641

RESUMO

BACKGROUND: Small RNA molecules play important roles in many biological processes and their dysregulation or dysfunction can cause disease. The current method of choice for genome-wide sRNA expression profiling is deep sequencing. RESULTS: Here we present Oasis 2, which is a new main release of the Oasis web application for the detection, differential expression, and classification of small RNAs in deep sequencing data. Compared to its predecessor Oasis, Oasis 2 features a novel and speed-optimized sRNA detection module that supports the identification of small RNAs in any organism with higher accuracy. Next to the improved detection of small RNAs in a target organism, the software now also recognizes potential cross-species miRNAs and viral and bacterial sRNAs in infected samples. In addition, novel miRNAs can now be queried and visualized interactively, providing essential information for over 700 high-quality miRNA predictions across 14 organisms. Robust biomarker signatures can now be obtained using the novel enhanced classification module. CONCLUSIONS: Oasis 2 enables biologists and medical researchers to rapidly analyze and query small RNA deep sequencing data with improved precision, recall, and speed, in an interactive and user-friendly environment. AVAILABILITY AND IMPLEMENTATION: Oasis 2 is implemented in Java, J2EE, mysql, Python, R, PHP and JavaScript. It is freely available at https://oasis.dzne.de.


Assuntos
Pequeno RNA não Traduzido/genética , Análise de Sequência de RNA/métodos , Estatística como Assunto/métodos , Sequência de Bases , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/genética , Software
11.
Bioinformatics ; 31(13): 2205-7, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25701573

RESUMO

UNLABELLED: Oasis is a web application that allows for the fast and flexible online analysis of small-RNA-seq (sRNA-seq) data. It was designed for the end user in the lab, providing an easy-to-use web frontend including video tutorials, demo data and best practice step-by-step guidelines on how to analyze sRNA-seq data. Oasis' exclusive selling points are a differential expression module that allows for the multivariate analysis of samples, a classification module for robust biomarker detection and an advanced programming interface that supports the batch submission of jobs. Both modules include the analysis of novel miRNAs, miRNA targets and functional analyses including GO and pathway enrichment. Oasis generates downloadable interactive web reports for easy visualization, exploration and analysis of data on a local system. Finally, Oasis' modular workflow enables for the rapid (re-) analysis of data. AVAILABILITY AND IMPLEMENTATION: Oasis is implemented in Python, R, Java, PHP, C++ and JavaScript. It is freely available at http://oasis.dzne.de. CONTACT: stefan.bonn@dzne.de SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , MicroRNAs/análise , Sistemas On-Line , Análise de Sequência de RNA/métodos , Software , Humanos , Internet , MicroRNAs/genética
12.
Melanoma Res ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38950202

RESUMO

Melanoma is the most serious and deadly form of skin cancer and with progression to advanced melanoma, the intrinsically disordered protein α-synuclein is upregulated to high levels. While toxic to dopaminergic neurons in Parkinson's disease, α-synuclein is highly beneficial for primary and metastatic melanoma cells. To gain detailed insights into this exact opposite role of α-synuclein in advanced melanoma, we performed proteomic studies of high-level α-synuclein-expressing human melanoma cell lines that were treated with the diphenyl-pyrazole small-molecule compound anle138b, which binds to and interferes with the oligomeric structure of α-synuclein. We also performed proteomic and transcriptomic studies of human melanoma xenografts that were treated systemically with the anle138b compound. The results reveal that interfering with oligomerized α-synuclein in the melanoma cells in these tumor xenografts led to a substantial upregulation and expression of major histocompatibility complex proteins, which are pertinent to enhancing anti-melanoma immune responses.

13.
Cells ; 12(16)2023 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-37626863

RESUMO

Fatal familial insomnia (FFI) is a rare autosomal-dominant inherited prion disease with a wide variability in age of onset. Its causes are not known. In the present study, we aimed to analyze genetic risk factors other than the prion protein gene (PRNP), in FFI patients with varying ages of onset. Whole-exome sequencing (WES) analysis was performed for twenty-five individuals with FFI (D178N-129M). Gene ontology enrichment analysis was carried out by Reactome to generate hypotheses regarding the biological processes of the identified genes. In the present study, we used a statistical approach tailored to the specifics of the data and identified nineteen potential gene variants with a potential effect on the age of onset. Evidence for potential disease modulatory risk loci was observed in two pseudogenes (NR1H5P, GNA13P1) and three protein coding genes (EXOC1L, SRSF11 and MSANTD3). These genetic variants are absent in FFI patients with early disease onset (19-40 years). The biological function of these genes and PRNP is associated with programmed cell death, caspase-mediated cleavage of cytoskeletal proteins and apoptotic cleavage of cellular proteins. In conclusions, our study provided first evidence for the involvement of genetic risk factors additional to PRNP, which may influence the onset of clinical symptoms in FFI.


Assuntos
Insônia Familiar Fatal , Príons , Humanos , Insônia Familiar Fatal/genética , Sequenciamento do Exoma , Idade de Início , Genes Reguladores , Proteínas Priônicas/genética
14.
Nat Commun ; 14(1): 4416, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479718

RESUMO

Pulmonary hypertension worsens outcome in left heart disease. Stiffening of the pulmonary artery may drive this pathology by increasing right ventricular dysfunction and lung vascular remodeling. Here we show increased stiffness of pulmonary arteries from patients with left heart disease that correlates with impaired pulmonary hemodynamics. Extracellular matrix remodeling in the pulmonary arterial wall, manifested by dysregulated genes implicated in elastin degradation, precedes the onset of pulmonary hypertension. The resulting degradation of elastic fibers is paralleled by an accumulation of fibrillar collagens. Pentagalloyl glucose preserves arterial elastic fibers from elastolysis, reduces inflammation and collagen accumulation, improves pulmonary artery biomechanics, and normalizes right ventricular and pulmonary hemodynamics in a rat model of pulmonary hypertension due to left heart disease. Thus, targeting extracellular matrix remodeling may present a therapeutic approach for pulmonary hypertension due to left heart disease.


Assuntos
Cardiopatias , Hipertensão Pulmonar , Humanos , Animais , Ratos , Artéria Pulmonar , Fenômenos Biomecânicos , Elastina
15.
Sci Rep ; 12(1): 4091, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260714

RESUMO

Single cell multi-omics analysis has the potential to yield a comprehensive understanding of the cellular events that underlie the basis of human diseases. The cardinal feature to access this information is the technology used for single-cell isolation, barcoding, and sequencing. Most currently used single-cell RNA-sequencing platforms have limitations in several areas including cell selection, documentation and library chemistry. In this study, we describe a novel high-throughput, full-length, single-cell RNA-sequencing approach that combines the CellenONE isolation and sorting system with the ICELL8 processing instrument. This method offers substantial improvements in single cell selection, documentation and capturing rate. Moreover, it allows the use of flexible chemistry for library preparations and the analysis of living or fixed cells, whole cells independent of sizing and morphology, as well as of nuclei. We applied this method to dermal fibroblasts derived from six patients with different segmental progeria syndromes and defined phenotype associated pathway signatures with variant associated expression modifiers. These results validate the applicability of our method to highlight genotype-expression relationships for molecular phenotyping of individual cells derived from human patients.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Análise de Célula Única , Envelhecimento , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Fenótipo , RNA , Análise de Célula Única/métodos
16.
Pain ; 163(8): e927-e941, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34961757

RESUMO

ABSTRACT: Prdm12 is a conserved epigenetic transcriptional regulator that displays restricted expression in nociceptors of the developing peripheral nervous system. In mice, Prdm12 is required for the development of the entire nociceptive lineage. In humans, PRDM12 mutations cause congenital insensitivity to pain, likely because of the loss of nociceptors. Prdm12 expression is maintained in mature nociceptors suggesting a yet-to-be explored functional role in adults. Using Prdm12 inducible conditional knockout mouse models, we report that in adult nociceptors Prdm12 is no longer required for cell survival but continues to play a role in the transcriptional control of a network of genes, many of them encoding ion channels and receptors. We found that disruption of Prdm12 alters the excitability of dorsal root ganglion neurons in culture. Phenotypically, we observed that mice lacking Prdm12 exhibit normal responses to thermal and mechanical nociceptive stimuli but a reduced response to capsaicin and hypersensitivity to formalin-induced inflammatory pain. Together, our data indicate that Prdm12 regulates pain-related behavior in a complex way by modulating gene expression in adult nociceptors and controlling their excitability. The results encourage further studies to assess the potential of Prdm12 as a target for analgesic development.


Assuntos
Proteínas de Transporte , Gânglios Espinais , Proteínas do Tecido Nervoso , Nociceptores , Animais , Proteínas de Transporte/genética , Gânglios Espinais/metabolismo , Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Nociceptores/fisiologia , Dor/genética , Dor/metabolismo
17.
J Cachexia Sarcopenia Muscle ; 13(6): 3106-3121, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36254806

RESUMO

BACKGROUND: Human pluripotent stem cell-derived muscle models show great potential for translational research. Here, we describe developmentally inspired methods for the derivation of skeletal muscle cells and their utility in skeletal muscle tissue engineering with the aim to model skeletal muscle regeneration and dystrophy in vitro. METHODS: Key steps include the directed differentiation of human pluripotent stem cells to embryonic muscle progenitors followed by primary and secondary foetal myogenesis into three-dimensional muscle. To simulate Duchenne muscular dystrophy (DMD), a patient-specific induced pluripotent stem cell line was compared to a CRISPR/Cas9-edited isogenic control line. RESULTS: The established skeletal muscle differentiation protocol robustly and faithfully recapitulates critical steps of embryonic myogenesis in two-dimensional and three-dimensional cultures, resulting in functional human skeletal muscle organoids (SMOs) and engineered skeletal muscles (ESMs) with a regeneration-competent satellite-like cell pool. Tissue-engineered muscle exhibits organotypic maturation and function (up to 5.7 ± 0.5 mN tetanic twitch tension at 100 Hz in ESM). Contractile performance could be further enhanced by timed thyroid hormone treatment, increasing the speed of contraction (time to peak contraction) as well as relaxation (time to 50% relaxation) of single twitches from 107 ± 2 to 75 ± 4 ms (P < 0.05) and from 146 ± 6 to 100 ± 6 ms (P < 0.05), respectively. Satellite-like cells could be documented as largely quiescent PAX7+ cells (75 ± 6% Ki67- ) located adjacent to muscle fibres confined under a laminin-containing basal membrane. Activation of the engineered satellite-like cell niche was documented in a cardiotoxin injury model with marked recovery of contractility to 57 ± 8% of the pre-injury force 21 days post-injury (P < 0.05 compared to Day 2 post-injury), which was completely blocked by preceding irradiation. Absence of dystrophin in DMD ESM caused a marked reduction of contractile force (-35 ± 7%, P < 0.05) and impaired expression of fast myosin isoforms resulting in prolonged contraction (175 ± 14 ms, P < 0.05 vs. gene-edited control) and relaxation (238 ± 22 ms, P < 0.05 vs. gene-edited control) times. Restoration of dystrophin levels by gene editing rescued the DMD phenotype in ESM. CONCLUSIONS: We introduce human muscle models with canonical properties of bona fide skeletal muscle in vivo to study muscle development, maturation, disease and repair.


Assuntos
Distrofia Muscular de Duchenne , Células Satélites de Músculo Esquelético , Humanos , Distrofia Muscular de Duchenne/genética , Músculo Esquelético/metabolismo , Desenvolvimento Muscular/genética , Células Satélites de Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo
18.
Sci Rep ; 11(1): 17374, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34462487

RESUMO

A strong focus on sex-related differences has arisen recently in neurobiology, but most investigations focus on brain function in vivo, ignoring common experimental models like cultured neurons. A few studies have addressed morphological differences between male and female neurons in culture, but very few works focused on functional aspects, and especially on presynaptic function. To fill this gap, we studied here functional parameters of synaptic vesicle recycling in hippocampal cultures from male and female rats, which are a standard model system for many laboratories. We found that, although the total vesicle pools are similar, the recycling pool of male synapses was larger, and was more frequently used. This was in line with the observation that the male synapses engaged in stronger local translation. Nevertheless, the general network activity of the neurons was similar, and only small differences could be found when stimulating the cultures. We also found only limited differences in several other assays. We conclude that, albeit these cultures are similar in behavior, future studies of synapse behavior in culture should take the sex of the animals into account.


Assuntos
Neurônios/metabolismo , Vesículas Sinápticas/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Células Cultivadas , Feminino , Hipocampo/citologia , Hipocampo/metabolismo , Masculino , Neurônios/citologia , Ratos , Ratos Wistar , Sinaptotagmina I/metabolismo , Tetrodotoxina/farmacologia
19.
Sci Rep ; 11(1): 2464, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510256

RESUMO

Progressive stenosis is one of the main factors that limit the lifetime of bioprosthetic valved conduits. To improve long-term performance we aimed to identify targets that inhibit pannus formation on conduit walls. From 11 explanted, obstructed, RNAlater presevered pulmonary valved conduits, we dissected the thickened conduit wall and the thin leaflet to determine gene expression-profiles using ultra deep sequencing. Differential gene expression between pannus and leaflet provided the dataset that was screened for potential targets. Promising target candidates were immunohistologically stained to see protein abundance and the expressing cell type(s). While immunostainings for DDR2 and FGFR2 remained inconclusive, EGFR, ErbB4 and FLT4 were specifically expressed in a subset of tissue macrophages, a cell type known to regulate the initiation, maintenance, and resolution of tissue repair. Taken toghether, our data suggest EGFR, ErbB4 and FLT4 as potential target candidates to limit pannus formation in bioprosthestic replacement valves.


Assuntos
Bioprótese , Regulação da Expressão Gênica , Próteses Valvulares Cardíacas , Valvas Cardíacas , Adulto , Criança , Pré-Escolar , Feminino , Valvas Cardíacas/metabolismo , Valvas Cardíacas/patologia , Valvas Cardíacas/cirurgia , Humanos , Lactente , Masculino
20.
Aquat Toxicol ; 238: 105927, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34340001

RESUMO

Active substances of pesticides, biocides or pharmaceuticals can induce adverse side effects in the aquatic ecosystem, necessitating environmental hazard and risk assessment prior to substance registration. The freshwater crustacean Daphnia magna is a model organism for acute and chronic toxicity assessment representing aquatic invertebrates. However, standardized tests involving daphnia are restricted to the endpoints immobility and reproduction and thus provide only limited insights into the underlying modes-of-action. Here, we applied transcriptome profiling to a modified D. magna Acute Immobilization test to analyze and compare gene expression profiles induced by the GABA-gated chloride channel blocker fipronil and the nicotinic acetylcholine receptor (nAChR) agonist imidacloprid. Daphnids were expose to two low effect concentrations of each substance followed by RNA sequencing and functional classification of affected gene ontologies and pathways. For both insecticides, we observed a concentration-dependent increase in the number of differentially expressed genes, whose expression changes were highly significantly positively correlated when comparing both test concentrations. These gene expression fingerprints showed virtually no overlap between the test substances and they related well to previous data of diazepam and carbaryl, two substances targeting similar molecular key events. While, based on our results, fipronil predominantly interfered with molecular functions involved in ATPase-coupled transmembrane transport and transcription regulation, imidacloprid primarily affected oxidase and oxidoreductase activity. These findings provide evidence that systems biology approaches can be utilized to identify and differentiate modes-of-action of chemical stressors in D. magna as an invertebrate aquatic non-target organism. The mechanistic knowledge extracted from such data will in future contribute to the development of Adverse Outcome Pathways (AOPs) for read-across and prediction of population effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA