Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Methods ; 21(3): 477-487, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38326495

RESUMO

Deep learning models, such as AlphaFold2 and RosettaFold, enable high-accuracy protein structure prediction. However, large protein complexes are still challenging to predict due to their size and the complexity of interactions between multiple subunits. Here we present CombFold, a combinatorial and hierarchical assembly algorithm for predicting structures of large protein complexes utilizing pairwise interactions between subunits predicted by AlphaFold2. CombFold accurately predicted (TM-score >0.7) 72% of the complexes among the top-10 predictions in two datasets of 60 large, asymmetric assemblies. Moreover, the structural coverage of predicted complexes was 20% higher compared to corresponding Protein Data Bank entries. We applied the method on complexes from Complex Portal with known stoichiometry but without known structure and obtained high-confidence predictions. CombFold supports the integration of distance restraints based on crosslinking mass spectrometry and fast enumeration of possible complex stoichiometries. CombFold's high accuracy makes it a promising tool for expanding structural coverage beyond monomeric proteins.


Assuntos
Algoritmos , Bases de Dados de Proteínas , Espectrometria de Massas
2.
Mol Ther ; 32(10): 3712-3728, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39086132

RESUMO

Targeting multiple viral proteins is pivotal for sustained suppression of highly mutable viruses. In recent years, broadly neutralizing antibodies that target the influenza virus hemagglutinin and neuraminidase glycoproteins have been developed, and antibody monotherapy has been tested in preclinical and clinical studies to treat or prevent influenza virus infection. However, the impact of dual neutralization of the hemagglutinin and neuraminidase on the course of infection, as well as its therapeutic potential, has not been thoroughly tested. For this purpose, we generated a bispecific antibody that neutralizes both the hemagglutinin and the neuraminidase of influenza viruses. We demonstrated that this bispecific antibody has a dual-antiviral activity as it blocks infection and prevents the release of progeny viruses from the infected cells. We show that dual neutralization of the hemagglutinin and the neuraminidase by a bispecific antibody is advantageous over monoclonal antibody combination as it resulted an improved neutralization capacity and augmented the antibody effector functions. Notably, the bispecific antibody showed enhanced antiviral activity in influenza virus-infected mice, reduced mice mortality, and limited the virus mutation profile upon antibody administration. Thus, dual neutralization of the hemagglutinin and neuraminidase could be effective in controlling influenza virus infection.


Assuntos
Anticorpos Biespecíficos , Anticorpos Neutralizantes , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Neuraminidase , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/imunologia , Animais , Neuraminidase/antagonistas & inibidores , Neuraminidase/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Camundongos , Humanos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Anticorpos Antivirais/imunologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/virologia , Testes de Neutralização , Cães , Modelos Animais de Doenças , Células Madin Darby de Rim Canino , Influenza Humana/imunologia , Influenza Humana/virologia , Influenza Humana/tratamento farmacológico , Feminino
3.
Curr Opin Struct Biol ; 87: 102841, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38795564

RESUMO

Recent progress in protein structure prediction based on deep learning revolutionized the field of Structural Biology. Beyond single proteins, it also enabled high-throughput prediction of structures of protein-protein interactions. Despite the success in predicting complex structures, large macromolecular assemblies still require specialized approaches. Here we describe recent advances in modeling macromolecular assemblies using integrative and hierarchical approaches. We highlight applications that predict protein-protein interactions and challenges in modeling complexes based on the interaction networks, including the prediction of complex stoichiometry and heterogeneity.


Assuntos
Aprendizado Profundo , Modelos Moleculares , Proteínas , Proteínas/química , Proteínas/metabolismo , Conformação Proteica , Biologia Computacional/métodos , Humanos , Ligação Proteica
4.
bioRxiv ; 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37293053

RESUMO

Deep learning models, such as AlphaFold2 and RosettaFold, enable high-accuracy protein structure prediction. However, large protein complexes are still challenging to predict due to their size and the complexity of interactions between multiple subunits. Here we present CombFold, a combinatorial and hierarchical assembly algorithm for predicting structures of large protein complexes utilizing pairwise interactions between subunits predicted by AlphaFold2. CombFold accurately predicted (TM-score > 0.7) 72% of the complexes among the Top-10 predictions in two datasets of 60 large, asymmetric assemblies. Moreover, the structural coverage of predicted complexes was 20% higher compared to corresponding PDB entries. We applied the method on complexes from Complex Portal with known stoichiometry but without known structure and obtained high-confidence predictions. CombFold supports the integration of distance restraints based on crosslinking mass spectrometry and fast enumeration of possible complex stoichiometries. CombFold's high accuracy makes it a promising tool for expanding structural coverage beyond monomeric proteins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA