Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 27(2): 667-679, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30696149

RESUMO

An all-dielectric metasurface is deemed to serve a potential platform to demonstrate spectral filters. Silicon-rich silicon nitride (SRN), which contains a relatively large portion of silicon, can exhibit higher refractive indices, when compared to silicon nitride. Meanwhile, the extinction coefficient of SRN is smaller than that of hydrogenated amorphous silicon, leading to reduced absorption loss in the shorter wavelength. SRN is therefore recommended as a scattering element from the perspective of realizing all-dielectric metasurfaces. In this work, we propose and embody a suite of highly efficient structural color filters, capitalizing on a dielectric metasurface that consists of a two-dimensional array of SRN nanodisks that are embedded in a polymeric layer. The SRN nanodisks may support the electric dipole (ED) and magnetic dipole (MD) resonances via Mie scattering, thereby leading to appropriate spectral filtering characteristics. The ED and MD are identified from field profile observation with the assistance of finite-difference time-domain simulations. The manufactured color filters are observed to produce various colors in both transmission and reflection modes throughout the visible band, giving rise to a high transmission of around 90% in the off-resonance region and a reflection ranging up to 60%. A variety of colors can be realized by tuning the resonance by adjusting the structural parameters such as the period, diameter, and height of the SRN nanodisks. The spectral position of resonances might be flexibly tuned by tailoring the polymer surrounding the SRN nanodisks. It is anticipated that the proposed coloring devices will be actively used for color displays, imaging devices, and photorealistic color printing.

2.
Opt Lett ; 43(18): 4481-4484, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30211895

RESUMO

We computationally reconstruct short- to long-wave infrared spectra using an array of plasmonic metasurface filters. We illuminate the filter array with an unknown spectrum and measure the optical power transmitted through each filter with an infrared microscope to emulate a filter-detector array system. We then use the recursive least squares method to determine the unknown spectrum. We demonstrate our method with light from a blackbody. We also demonstrate it with spectra generated by passing the light from the blackbody through various materials. Our approach is a step towards miniaturized spectrometers spanning the short- to long-wave infrared based on filter-detector arrays.

3.
Opt Express ; 22(3): 3691-704, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24663661

RESUMO

The enhancement of color saturation and color gamut has been demonstrated, by taking advantage of a dual-band color filter based on a subwavelength rectangular metal-dielectric resonant grating, which exhibits an adjustable spectral response with respect to its relative transmittances at the two bands of green and red, thereby producing any color in between green and red, through the adjustment of incoming light polarization. Also, the prominent features of the spectral response of the filter, namely the bandwidth and resonant wavelength, can be readily adjusted by varying the dielectric layer thickness and the grating pitch, respectively. The dependence of chromaticity coordinates of the filter in the CIE (International Commission on Illumination) 1931 chromaticity diagram upon the parameters of the spectral response, including the center wavelength, spectral bandwidth and sideband level, has been rigorously examined, and their influence on the color gamut and the excitation purity, which is a colorimetric measure of saturation, has been analytically explored at the same time, in order to optimize the color performance of the filters. In particular, a device with wider spectral bandwidth was observed to efficiently extend the color gamut and enhance the color saturation, i.e. the excitation purity for a given sideband level. Two dual-band green-red filters, exhibiting different bandwidths of about 17 and 36 nm, were specifically designed and fabricated. As compared with the case with narrower bandwidth, the device with wider bandwidth was observed to provide both higher excitation purity leading to better color saturation and greater separation of the chromaticity coordinates for the filter output for different incident polarizations, which provides extended color gamut. The proposed device structure may permit the color tuning span to encompass all primary color bands, by adjusting the grating pitch.

4.
Opt Express ; 21(23): 28783-93, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24514390

RESUMO

We have demonstrated a highly efficient electrically tunable color filter, which provides precise control of color output, taking advantage of a nano-photonic polarization-tailored dichroic resonator combined with a liquid-crystal based polarization rotator. The visible dichroic resonator based on the guided mode resonance, which incorporates a planar dielectric waveguide in Si3N4 integrated with an asymmetric two-dimensional subwavelength Al grating with unequal pitches along its principal axes, exhibited polarization specific transmission featuring high efficiency up to 75%. The proposed tunable color filters were constructed by combining three types of dichroic resonators, each of which deals with a mixture of two primary colors (i.e. blue/green, blue/red, and green/red) with a polarization rotator exploiting a twisted nematic liquid crystal cell. The output colors could be dynamically and seamlessly customized across the blend of the two corresponding primary colors, by altering the polarization via the voltage applied to the polarization rotator. For the blue/red filter, the center wavelength was particularly adjusted from 460 to 610 nm with an applied voltage variation of 2 V, leading to a tuning range of up to 150 nm. And the spectral tuning was readily confirmed via color mapping. The proposed devices may permit the tuning span to be readily extended by tailoring the grating pitches.

5.
Appl Opt ; 51(36): 8587-93, 2012 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23262598

RESUMO

A high-speed parallel optical interconnect (POI) incorporating silicon nitride (Si(3)N(4)) waveguides was realized that takes advantage of an eight-channel input/output interface based on grating couplers (GCs) in alignment with fiber arrays. For each of the channels, a straight waveguide in the middle is linked to a GC via a taper, which is addressed by a single-mode fiber (SMF) at the input and a multimode fiber at the output. To verify the feasibility of the interconnect, the alignment tolerance has been explored in terms of the position and angle of incidence of the SMF with respect to the GC. This has been conducted by probing into the optical throughput of the proposed POI, which is determined by different sources of loss associated with the proposed Si(3)N(4) waveguide device. For a typical GC, the measured coupling loss was 5.2 dB at the center wavelength of 1590 nm, when addressed by a SMF. For a 1 dB loss penalty, the positional tolerance of the fiber was discovered to about ±3 µm and 45 µm along the lateral direction and the direction inclined at 16 deg normal to the device, respectively. The corresponding angular tolerance was ±1 deg. We ultimately confirmed that 8×10 Gbps high-speed digital signals were efficiently delivered through the proposed POI.

6.
ACS Nano ; 15(4): 6573-6581, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33749230

RESUMO

Long-wave infrared (LWIR) photodetection is of high technological importance, having a wide range of applications that include thermal imaging and spectroscopy. Two-dimensional (2D) noble-transition-metal dichalcogenides, platinum diselenide (PtSe2) in particular, have recently shown great promise for infrared detection. However, previous studies have mainly focused on wavelengths up to the short-wave infrared region. In this work, we demonstrate LWIR photodetectors based on multilayer PtSe2. In addition, we present an optical cavity substrate that enhances the light-matter interaction in 2D materials and thus their photodetection performance in the LWIR spectral region. The PtSe2 photoconductors fabricated on the TiO2/Au optical cavity substrate exhibit responsivities up to 54 mA/W to LWIR illumination at a wavelength of 8.35 µm. Moreover, these devices show a fast photoresponse with a time constant of 54 ns to white light illumination. The findings of this study reveal the potential of multilayer PtSe2 for fast and broadband photodetection from visible to LWIR wavelengths.

7.
Sci Rep ; 10(1): 5377, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32214114

RESUMO

In recent years there has been much interest concerning the development of modulators in the mid- to long-wave infrared, based on emerging materials such as graphene. These have been frequently pursued for optical communications, though also for other specialized applications such as infrared scene projectors. Here we investigate a new application for graphene modulators in the mid- to long-wave infrared. We demonstrate, for the first time, computational spectroscopy in the mid- to long-wave infrared using a graphene-based metasurface modulator. Furthermore, our metasurface device operates at low gate voltage. To demonstrate computational spectroscopy, we provide our algorithm with the measured reflection spectra of the modulator at different gate voltages. We also provide it with the measured reflected light power as a function of the gate voltage. The algorithm then estimates the input spectrum. We show that the reconstructed spectrum is in good agreement with that measured directly by a Fourier transform infrared spectrometer, with a normalized mean-absolute-error (NMAE) of 0.021.

8.
Adv Mater ; 32(38): e2001329, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32776369

RESUMO

Semiconducting absorbers in high-performance short-wave infrared (SWIR) photodetectors and imaging sensor arrays are dominated by single-crystalline germanium and III-V semiconductors. However, these materials require complex growth and device fabrication procedures. Here, thermally evaporated Sex Te1- x alloy thin films with tunable bandgaps for the fabrication of high-performance SWIR photodetectors are reported. From absorption measurements, it is shown that the bandgaps of Sex Te1- x films can be tuned continuously from 0.31 eV (Te) to 1.87 eV (Se). Owing to their tunable bandgaps, the peak responsivity position and photoresponse edge of Sex Te1- x film-based photoconductors can be tuned in the SWIR regime. By using an optical cavity substrate consisting of Au/Al2 O3 to enhance its absorption near the bandgap edge, the Se0.32 Te0.68 film (an optical bandgap of ≈0.8 eV)-based photoconductor exhibits a cut-off wavelength at ≈1.7 µm and gives a responsivity of 1.5 AW-1 and implied detectivity of 6.5 × 1010 cm Hz1/2 W-1 at 1.55 µm at room temperature. Importantly, the nature of the thermal evaporation process enables the fabrication of Se0.32 Te0.68 -based 42 × 42 focal plane arrays with good pixel uniformity, demonstrating the potential of this unique material system used for infrared imaging sensor systems.

9.
Sci Rep ; 9(1): 13537, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31537829

RESUMO

Miniaturized spectrometers are advantageous for many applications and can be achieved by what we term the filter-array detector-array (FADA) approach. In this method, each element of an optical filter array filters the light that is transmitted to the matching element of a photodetector array. By providing the outputs of the photodetector array and the filter transmission functions to a reconstruction algorithm, the spectrum of the light illuminating the FADA device can be estimated. Here, we experimentally demonstrate an array of 101 band-pass transmission filters that span the mid- to long-wave infrared (6.2 to 14.2 µm). Each filter comprises a sub-wavelength array of coaxial apertures in a gold film. As a proof-of-principle demonstration of the FADA approach, we use a Fourier transform infrared (FTIR) microscope to record the optical power transmitted through each filter. We provide this information, along with the transmission spectra of the filters, to a recursive least squares (RLS) algorithm that estimates the incident spectrum. We reconstruct the spectrum of the infrared light source of our FTIR and the transmission spectra of three polymer-type materials: polyethylene, cellophane and polyvinyl chloride. Reconstructed spectra are in very good agreement with those obtained via direct measurement by our FTIR system.

10.
ACS Nano ; 12(7): 7253-7263, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-29912549

RESUMO

Two-dimensional (2D) materials, particularly black phosphorus (bP), have demonstrated themselves to be excellent candidates for high-performance infrared photodetectors and transistors. However, high-quality bP can be obtained only via mechanical exfoliation from high-temperature- and high-pressure-grown bulk crystals and degrades rapidly when exposed to ambient conditions. Here, we report solution-synthesized and air-stable quasi-2D tellurium (Te) nanoflakes for short-wave infrared (SWIR) photodetectors. We perform comprehensive optical characterization via polarization-resolved transmission and reflection measurements and report the absorbance and complex refractive index of Te crystals. It is found that this material is an indirect semiconductor with a band gap of 0.31 eV. From temperature-dependent electrical measurements, we confirm this band-gap value and find that 12 nm thick Te nanoflakes show high hole mobilities of 450 and 1430 cm2 V-1 s-1 at 300 and 77 K, respectively. Finally, we demonstrate that despite its indirect band gap, Te can be utilized for high-performance SWIR photodetectors by employing optical cavity substrates consisting of Au/Al2O3 to dramatically increase the absorption in the semiconductor. By changing the thickness of the Al2O3 cavity, the peak responsivity of Te photoconductors can be tuned from 1.4 µm (13 A/W) to 2.4 µm (8 A/W) with a cutoff wavelength of 3.4 µm, fully capturing the SWIR band. An optimized room-temperature specific detectivity ( D*) of 2 × 109 cm Hz1/2 W-1 is obtained at a wavelength of 1.7 µm.

11.
Sci Rep ; 7(1): 13574, 2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-29051592

RESUMO

All dielectric transmissive type polarization-tuned structural multicolor pixels (MCPs) are proposed and demonstrated based on a one-dimensional hydrogenated amorphous silicon (a-Si:H) grating integrated with a silicon nitride waveguide. Both bandpass and bandstop transmission filtering characteristics in the visible regime, centered at the same wavelength, have been achieved by tailoring the structural parameters including the duty ratio of the grating and the thickness of the dielectric waveguide. For the three manufactured MCPs, the transmission peak exceeds 70% for the transverse electric (TE) polarization and 90% for the transverse magnetic (TM) polarization as observed at the resonance and off-resonance wavelength, respectively. The polarization-switched transmissions are attributed to the guided mode resonance initiated by the interaction of the a-Si:H grating and the dielectric waveguide. A broad color palette covering the entire visible band was successfully realized from a suite of MCPs with varying grating pitches. The proposed structural color pixels are expected to facilitate the construction of dynamic displays, image sensors, optical data storage, security tags, and so forth.

12.
Sci Rep ; 7: 40073, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28067264

RESUMO

Highly efficient polarization-tuned structural color filters, which are based on a one- dimensional resonant aluminum grating that is integrated with a silicon nitride waveguide, are proposed and demonstrated to feature a broad color palette. For such a metallic grating structure, transmissive color filtering is only feasible for the incident transverse-magnetic (TM) polarization due to its high reflection regarding the transverse-electric (TE) case; however, polarization-tuned customized colors can be efficiently achieved by optimizing the structural parameters like the duty ratio of the metallic grating. For the fabricated color filters, the transmission peaks, which are imputed to the resonance between the incident light and the guided modes that are supported by the dielectric waveguide, provided efficiencies as high as 90% and 70% for the TM and TE polarizations, respectively, as intended. Through the tailoring of the polarization, a group of filters with different grating periods were successfully exploited to produce a broad color palette spanning the entire visible band. Lastly, a nanoscale alphabetic pattern featuring a flexible combination of colorations was practically constructed via an arrangement of horizontal and vertical gratings.

13.
Sci Rep ; 7(1): 2556, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28566739

RESUMO

It is advantageous to construct a dielectric metasurface in silicon due to its compatibility with cost-effective, mature processes for complementary metal-oxide-semiconductor devices. However, high-quality crystalline-silicon films are difficult to grow on foreign substrates. In this work, we propose and realize highly efficient structural color filters based on a dielectric metasurface exploiting hydrogenated amorphous silicon (a-Si:H), known to be lossy in the visible regime. The metasurface is comprised of an array of a-Si:H nanodisks embedded in a polymer, providing a homogeneously planarized surface that is crucial for practical applications. The a-Si:H nanodisk element is deemed to individually support an electric dipole (ED) and magnetic dipole (MD) resonance via Mie scattering, thereby leading to wavelength-dependent filtering characteristics. The ED and MD can be precisely identified by observing the resonant field profiles with the assistance of finite-difference time-domain simulations. The completed color filters provide a high transmission of around 90% in the off-resonance band longer than their resonant wavelengths, exhibiting vivid subtractive colors. A wide range of colors can be facilitated by tuning the resonance by adjusting the structural parameters like the period and diameter of the a-Si:H nanodisk. The proposed devices will be actively utilized to implement color displays, imaging devices, and photorealistic color printing.

14.
Sci Rep ; 6: 25496, 2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-27150979

RESUMO

Trans-reflective color filters, which take advantage of a phase compensated etalon (silver-titania-silver-titania) based nano-resonator, have been demonstrated to feature a variable spectral bandwidth at a constant resonant wavelength. Such adjustment of the bandwidth is presumed to translate into flexible control of the color saturation for the transmissive and reflective output colors produced by the filters. The thickness of the metallic mirror is primarily altered to tailor the bandwidth, which however entails a phase shift associated with the etalon. As a result, the resonant wavelength is inevitably displaced. In order to mitigate this issue, we attempted to compensate for the induced phase shift by introducing a dielectric functional layer on top of the etalon. The phase compensation mediated by the functional layer was meticulously investigated in terms of the thickness of the metallic mirror, from the perspective of the resonance condition. The proposed color filters were capable of providing additive colors of blue, green, and red for the transmission mode while exhibiting subtractive colors of yellow, magenta, and cyan for the reflection mode. The corresponding color saturation was estimated to be efficiently adjusted both in transmission and reflection.

15.
Sci Rep ; 5: 8467, 2015 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-25683162

RESUMO

We present a highly efficient omnidirectional color filter that takes advantage of an Ag-TiO2-Ag nano-resonator integrated with a phase-compensating TiO2 overlay. The dielectric overlay substantially improves the angular sensitivity by appropriately compensating for the phase pertaining to the structure and suppresses unwanted optical reflection so as to elevate the transmission efficiency. The filter is thoroughly designed, and it is analyzed in terms of its reflection, optical admittance, and phase shift, thereby highlighting the origin of the omnidirectional resonance leading to angle-invariant characteristics. The polarization dependence of the filter is explored, specifically with respect to the incident angle, by performing experiments as well as by providing the relevant theoretical explanation. We could succeed in demonstrating the omnidirectional resonance for the incident angles ranging to up to 70°, over which the center wavelength is shifted by below 3.5% and the peak transmission efficiency is slightly degraded from 69%. The proposed filters incorporate a simple multi-layered structure and are expected to be utilized as tri-color pixels for applications that include image sensors and display devices. These devices are expected to allow good scalability, not requiring complex lithographic processes.

16.
Sci Rep ; 4: 4921, 2014 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-24815530

RESUMO

Nanostructure based color filtering has been considered an attractive replacement for current colorant pigmentation in the display technologies, in view of its increased efficiencies, ease of fabrication and eco-friendliness. For such structural filtering, iridescence relevant to its angular dependency, which poses a detrimental barrier to the practical development of high performance display and sensing devices, should be mitigated. We report on a non-iridescent transmissive structural color filter, fabricated in a large area of 76.2 × 25.4 mm(2), taking advantage of a stack of three etalon resonators in dielectric films based on a high-index cavity in amorphous silicon. The proposed filter features a high transmission above 80%, a high excitation purity of 0.93 and non-iridescence over a range of 160°, exhibiting no significant change in the center wavelength, dominant wavelength and excitation purity, which implies no change in hue and saturation of the output color. The proposed structure may find its potential applications to large-scale display and imaging sensor systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA