Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Chem Soc Rev ; 52(9): 3098-3169, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37070570

RESUMO

In the last century, molecular crystals functioned predominantly as a means for determining the molecular structures via X-ray diffraction, albeit as the century came to a close the response of molecular crystals to electric, magnetic, and light fields revealed that the physical properties of molecular crystals were as rich as the diversity of molecules themselves. In this century, the mechanical properties of molecular crystals have continued to enhance our understanding of the colligative responses of weakly bound molecules to internal frustration and applied forces. Here, the authors review the main themes of research that have developed in recent decades, prefaced by an overview of the particular considerations that distinguish molecular crystals from traditional materials such as metals and ceramics. Many molecular crystals will deform themselves as they grow under some conditions. Whether they respond to intrinsic stress or external forces or interactions among the fields of growing crystals remains an open question. Photoreactivity in single crystals has been a leading theme in organic solid-state chemistry; however, the focus of research has been traditionally on reaction stereo- and regio-specificity. However, as light-induced chemistry builds stress in crystals anisotropically, all types of motions can be actuated. The correlation between photochemistry and the responses of single crystals-jumping, twisting, fracturing, delaminating, rocking, and rolling-has become a well-defined field of research in its own right: photomechanics. The advancement of our understanding requires theoretical and high-performance computations. Computational crystallography not only supports interpretations of mechanical responses, but predicts the responses itself. This requires the engagement of classical force-field based molecular dynamics simulations, density functional theory-based approaches, and the use of machine learning to divine patterns to which algorithms can be better suited than people. The integration of mechanics with the transport of electrons and photons is considered for practical applications in flexible organic electronics and photonics. Dynamic crystals that respond rapidly and reversibly to heat and light can function as switches and actuators. Progress in identifying efficient shape-shifting crystals is also discussed. Finally, the importance of mechanical properties to milling and tableting of pharmaceuticals in an industry still dominated by active ingredients composed of small molecule crystals is reviewed. A dearth of data on the strength, hardness, Young's modulus, and fracture toughness of molecular crystals underscores the need for refinement of measurement techniques and conceptual tools. The need for benchmark data is emphasized throughout.

2.
Acc Chem Res ; 55(4): 516-525, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35088591

RESUMO

Aberrant crystallization within the human body can lead to several disease states or adverse outcomes, yet much remains to be understood about the critical stages leading to these events, which can include crystal nucleation and growth, crystal aggregation, and the adhesion of crystals to cells. Kidney stones, which are aggregates of single crystals with physiological origins, are particularly illustrative of pathological crystallization, with 10% of the U.S. population experiencing at least one stone occurrence in their lifetimes. The human record of kidney stones is more than 2000 years old, as noted by Hippocrates in his renowned oath and much later by Robert Hooke in his treatise Micrographia. William Hyde Wollaston, who was a physician, chemist, physicist, and crystallographer, was fascinated with stones, leading him to discover an unusual stone that he described in 1810 as cystic oxide, later corrected to cystine. Despite this long history, however, a fundamental understanding of the stages of stone formation and the rational design of therapies for stone prevention have remained elusive.This Account reviews discoveries and advances from our laboratories that have unraveled the complex crystal growth mechanisms of l-cystine, which forms l-cystine kidney stones in at least 20 000 individuals in the U.S. alone. Although l-cystine stones affect fewer individuals than common calcium oxalate stones, they are usually larger, recur more frequently, and are more likely to cause chronic kidney disease. Real-time in situ atomic force microscopy (AFM) reveals that the crystal growth of hexagonal l-cystine is characterized by a complex mechanism in which six interlaced anisotropic spirals grow synchronously, emanating from a single screw dislocation to generate a micromorphology with the appearance of stacked hexagonal islands. In contrast, proximal heterochiral dislocations produce features that appear to be spirals but actually are closed loops, akin to a Frank-Read source. These unusual and aesthetic growth patterns can be explained by the coincidence of the dislocation Burgers vector and the crystallographic 61 screw axis. Inhibiting l-cystine crystal growth is key to preventing stone formation. Decades of studies of "tailor-made additives", which are imposter molecules that closely resemble the solute and bind to crystal faces through molecular recognition, have demonstrated their effects on crystal properties such as morphology and polymorphism. The ability to visualize crystal growth in real time by AFM enables quantitative measurements of step velocities and, by extension, the effect of prospective inhibitors on growth rates, which can then be used to deduce inhibition mechanisms. Investigations with a wide range of prospective inhibitors revealed the importance of precise molecular recognition for binding l-cystine imposters to crystal sites, which results in step pinning and the inhibition of step advancement as well as the growth of bulk crystals. Moreover, select inhibitors of crystal growth, measured in vitro, reduce or eliminate stone formation in knockout mouse models of cystinuria, promising a new pathway to l-cystine stone prevention. These observations have wide-ranging implications for the design of therapies based on tailor-made additives for diseases associated with aberrant crystallization, from disease-related stones to "xenostones" that form in vivo because of the crystallization of low-solubility therapeutic agents such as antiretroviral agents.


Assuntos
Cistinúria , Cálculos Renais , Animais , Cristalização , Cistina/química , Cistina/metabolismo , Cistina/uso terapêutico , Cistinúria/complicações , Cistinúria/tratamento farmacológico , Cistinúria/metabolismo , Rim , Cálculos Renais/química , Cálculos Renais/etiologia , Cálculos Renais/prevenção & controle , Masculino , Camundongos
3.
Malar J ; 22(1): 129, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37081532

RESUMO

BACKGROUND: Controlling malaria-transmitting Anopheles mosquitoes with pyrethroid insecticides is becoming increasingly challenging because of widespread resistance amongst vector populations. The development of new insecticides and insecticidal formulations is time consuming and costly, however. A more active crystalline form of deltamethrin, prepared by heating the commercial crystalline form, previously was reported to be 12-times faster acting against susceptible North American Anopheles quadrimaculatus mosquitoes. Herein the potential for heat-activated deltamethrin dispersed on chalk to overcome various resistance mechanisms amongst five West African Anopheles strains is investigated, and its long-term sustained lethality evaluated. METHODS: The more active deltamethrin form was generated in a commercial dust containing deltamethrin by heating the material as purchased. Tarsal contact bioassays were conducted to investigate its efficacy, potency, and speed of action against resistant Anopheles populations compared to the commercially available form of deltamethrin dust. RESULTS: In all cases, D-Fense Dust heated to generate the more active form of deltamethrin was substantially more effective than the commercially available formulation. 100% of both Banfora M and Kisumu populations were knocked down 10 min post-exposure with no recovery afterwards. Gaoua-ara and Tiefora strains exhibited 100% knockdown within 15 min, and the VK7 2014 strain exhibited 100% knockdown within 20 min. In all cases, 100% mortality was observed 24 h post-exposure. Conversely, the commercial formulation (unheated) resulted in less than 4% mortality amongst VK7 2014, Banfora, and Gaoua-ara populations by 24 h, and Tiefora and Kisumu mosquitoes experienced 14 and 47% mortality by 24 h, respectively. The heat-activated dust maintained comparable efficacy 13 months after heating. CONCLUSIONS: The heat-activated form of commercial deltamethrin D-Fense Dust outperformed the material as purchased, dramatically increasing efficacy against all tested pyrethroid-resistant strains. This increase in lethality was retained for 13 months of storage under ambient conditions in the laboratory. Higher energy forms of commonly used insecticides may be employed to overcome various resistance mechanisms seen in African Anopheles mosquitoes through more rapid uptake of insecticide molecules from their respective solid surfaces. That is, resistant mosquitoes can be killed with an insecticide to which they are resistant without altering the molecular composition of the insecticide.


Assuntos
Anopheles , Inseticidas , Piretrinas , Animais , Inseticidas/farmacologia , Resistência a Inseticidas , Controle de Mosquitos/métodos , Mosquitos Vetores , Piretrinas/farmacologia , Nitrilas/farmacologia
4.
Chirality ; 35(7): 418-426, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36932926

RESUMO

A great proportion of molecular crystals can be made to grow as twisted fibrils. Typically, this requires high crystallization driving forces that lead to spherulitic textures. Here, it is shown how micron size channels fabricated from poly(dimethylsiloxane) (PDMS) serve to collimate the circular polycrystalline growth fronts of optically banded spherulites of twisted crystals of three compounds, coumarin, 2,5-bis(3-dodecyl-2-thienyl)-thiazolo[5,4-d]thiazole, and tetrathiafulvalene. The relationships between helicoidal pitch, growth front coherence, and channel width are measured. As channels spill into open spaces, collimated crystals "diffract" via small angle branching. On the other hand, crystals grown together from separate channels whose bands are out of phase ultimately become a single in-phase bundle of fibrils by a cooperative mechanism yet unknown. The isolation of a single twist sense in individual channels is described. We forecast that such chiral molecular crystalline channels may function as chiral optical wave guides.

5.
Angew Chem Int Ed Engl ; 59(34): 14593-14601, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32472617

RESUMO

The growth of spontaneously twisted crystals is a common but poorly understood phenomenon. An analysis of the formation of twisted crystals of a metastable benzamide polymorph (form II) crystallizing from highly supersaturated aqueous and ethanol solutions is given here. Benzamide, the first polymorphic molecular crystal reported (1832), would have been the first helicoidal crystal observed had the original authors undertaken an analysis by light microscopy. Polymorphism and twisting frequently concur as they are both associated with high thermodynamic driving forces for crystallization. Optical and electron microscopies as well as electron and powder X-ray diffraction reveal a complex lamellar structure of benzamide form II needle-like crystals. The internal stress produced by the overgrowth of lamellae is shown to be able to create a twist moment that is responsible for the observed non-classical morphologies.

6.
Chem Rev ; 117(24): 14042-14090, 2017 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-29165999

RESUMO

Interactions of macromolecules with growing crystalline surfaces play an important role in biomineralization, determine survival of some organisms at low temperatures, and offer a range of potential industrial applications. The current understanding of crystal growth processes in the presence of macromolecules, including peptides and proteins, is reviewed, with a focus on interactions between macromolecules and surfaces of crystalline materials, macromolecule adsorption on different types of crystal surfaces, crystallization kinetics in the presence of macromolecular additives, macromolecule incorporation, and defect generation. Throughout, special attention is paid to the selectivity of macromolecule adsorption on, and incorporation within, crystal surfaces. The special role played by the size and complexity of macromolecules as compared to other crystallization additives is emphasized.

7.
J Am Chem Soc ; 140(40): 12915-12921, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30264567

RESUMO

A new inclusion compound consisting of a guanidinium 1,3,5-tri(4-sulfophenyl)benzene (G3TSPHB) host framework containing isophorone guests that surround isolated and seemingly inaccessible pockets was amenable to guest exchange with hexafluorobenzene (HFB) through a single crystal-single crystal transformation (SCSCT). Single-crystal X-ray diffraction of intermediate transformation states, from the parent compound G3TSPHB·(isophorone)3.7·(methanol)5.4 to the final state G3TSPHB·(isophorone)3.1·(HFB)2·(methanol)2, indicated a crystal symmetry change from monoclinic to hexagonal prior to full incorporation of HFB. Optical microscopy during the SCSCT revealed the formation of lamellae, which expanded and then coalesced into a single crystal when the phase transformation was complete. In situ Raman microscopy revealed changes in the orientation of isophorone guests during the transformation that suggested a pathway for HFB entry into the host cavities. The SCSCT occurs more rapidly than expected on the basis of simple diffusion, consistent with facilitated transport along the lamellae interfaces and a reduction in the length scale for guest exchange.

8.
Rep Prog Phys ; 81(9): 096501, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30059351

RESUMO

Dislocations in molecular crystals remain terra incognita. Owing to the complexity of molecular structure, dislocations in molecular crystals can be difficult to understand using only the foundational concepts devised over decades for hard materials. Herein, we review the generation, structure, and physicochemical consequences of dislocations in molecular crystals. Unlike metals, ceramics, and semiconductors, molecular crystals are often characterized by flexible building units of low symmetry, thereby limiting analysis, complicating modeling, and prompting new approaches to elucidate their role in crystallography from growth to mechanics. Such considerations affect applications ranging from plastic electronics and mechanical actuators to the tableting of pharmaceuticals.

9.
Faraday Discuss ; 211(0): 477-491, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30033458

RESUMO

X-ray powder diffraction and crystal structure prediction (CSP) algorithms were used in synergy to establish the crystal structure of the eighth polymorph of 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile (ROY), form R05. R05 crystallizes in the monoclinic space group P21 with lattice parameters a = 11.479(4) Å, b = 11.030(1) Å, c = 10.840(6) Å, ß = 118.23(1)°. This is both the first acentric ROY polymorph, and the first with Z' > 1. The torsion angles defined by the S-C-N-C atom sequence of each molecule in the asymmetric unit (R05-1 and R05-2) are 44.9° and -34.0°. These values are between those previously determined for the red and orange forms of ROY. The crystal packing and intermolecular interactions in R05 are explained herein through Hirshfeld surface analysis and an updated energy stability ranking is determined using computational methods. Although the application of CSP was critical to the structure solution of R05, energy stability rankings determined using a series of DFT van der Waals (vdW)-inclusive models substantially differ from experiment, indicating that ROY polymorphism continues to be a challenge for CSP.


Assuntos
Tiofenos/química , Cristalização , Cristalografia por Raios X , Modelos Moleculares , Teoria Quântica , Termodinâmica
10.
Soft Matter ; 15(1): 116-126, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30534682

RESUMO

Symmetry considerations preclude the possibility of twist or continuous helical symmetry in bulk crystalline structures. However, as has been shown nearly a century ago, twisted molecular crystals are ubiquitous and can be formed by about 1/4 of organic substances. Despite its ubiquity, this phenomenon has so far not been satisfactorily explained. In this work we study twisted molecular crystals as geometrically frustrated assemblies. We model the molecular constituents as uniaxially twisted cubes and examine their crystalline assembly. We exploit a renormalization group (RG) approach to follow the growth of the rod-like twisted crystals these constituents produce, inquiring in every step into the evolution of their morphology, response functions and residual energy. The gradual untwisting of the rod-like frustrated crystals predicted by the RG approach is verified experimentally using silicone rubber models of similar geometry. Our theory provides a mechanism for the conveyance of twist across length-scales observed experimentally and reconciles the apparent paradox of a twisted single crystal as a finite size effect.

11.
J Am Chem Soc ; 138(37): 12211-8, 2016 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-27617640

RESUMO

Accounting for the interactions of light with heterogeneous, anisotropic, absorbing, optically active media is part of the characterization of complex, transparent materials. Stained biological structures in thin tissue sections share many of these features, but systematic optical analyses beyond the employ of the simple petrographic microscopes have not be established. Here, this accounting is made for polycrystalline, spherulitic bundles of twisted d-mannitol lamellae grown from melts containing light-absorbing molecules. It has long been known that a significant percentage of molecular crystals readily grow as helicoidal ribbons with mesoscale pitches, but a general appreciation of the commonality of these non-classical crystal forms has been lost. Helicoidal crystal twisting was typically assayed by analyzing refractivity modulation in the petrographic microscope. However, by growing twisted crystals from melts in the presence of dissolved, light-absorbing molecules, crystal twisting can be assayed by analyzing the dichroism, both linear and circular. The term "helicoidal dichroism" is used here to describe the optical consequences of anisotropic absorbers precessing around radii of twisted crystalline fibrils or lamellae. d-Mannitol twists in two polymorphic forms, α and δ. The two polymorphs, when grown from supercooled melts in the presence of a variety of histochemical stains and textile dyes, are strongly dichroic in linearly polarized white light. The bis-azo dye Chicago sky blue is modeled because it is most absorbing when parallel and perpendicular to the radial axes in the respective spherulitic polymorphs. Optical properties were measured using Mueller matrix imaging polarimetry and simulated by taking into account the microstructure of the lamellae. The optical analysis of the dyed, patterned polycrystals clarifies aspects of the mesostructure that can be difficult to extract from bundles of tightly packed fibrils.

12.
J Am Chem Soc ; 138(14): 4881-9, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26986837

RESUMO

Structures of the α and ß phases of resorcinol, a major commodity chemical in the pharmaceutical, agrichemical, and polymer industries, were the first polymorphic pair of molecular crystals solved by X-ray analysis. It was recently stated that "no additional phases can be found under atmospheric conditions" (Druzbicki, K. et al. J. Phys. Chem. B 2015, 119, 1681). Herein is described the growth and structure of a new ambient pressure phase, ε, through a combination of optical and X-ray crystallography and by computational crystal structure prediction algorithms. α-Resorcinol has long been a model for mechanistic crystal growth studies from both solution and vapor because prisms extended along the polar axis grow much faster in one direction than in the opposite direction. Research has focused on identifying the absolute sense of the fast direction-the so-called "resorcinol riddle"-with the aim of identifying how solvent controls crystal growth. Here, the growth velocity dissymmetry in the melt is analyzed for the ß phase. The ε phase only grows from the melt, concomitant with the ß phase, as polycrystalline, radially growing spherulites. If the radii are polar, then the sense of the polar axis is an essential feature of the form. Here, this determination is made for spherulites of ß resorcinol (ε, point symmetry 222, does not have a polar axis) with additives that stereoselectively modify growth velocities. Both ß and ε have the additional feature that individual radial lamellae may adopt helicoidal morphologies. We correlate the appearance of twisting in ß and ε with the symmetry of twist-inducing additives.

13.
Proc Natl Acad Sci U S A ; 110(43): 17195-8, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24101507

RESUMO

The theory of dislocation-controlled crystal growth identifies a continuous spiral step with an emergent lattice displacement on a crystal surface; a mechanistic corollary is that closely spaced, oppositely winding spirals merge to form concentric loops. In situ atomic force microscopy of step propagation on pathological L-cystine crystals did indeed show spirals and islands with step heights of one lattice displacement. We show by analysis of the rates of growth of smaller steps only one molecule high that the major morphological spirals and loops are actually consequences of the bunching of the smaller steps. The morphology of the bunched steps actually inverts the predictions of the theory: Spirals arise from pairs of dislocations, loops from single dislocations. Only through numerical simulation of the growth is it revealed how normal growth of anisotropic layers of molecules within the highly symmetrical crystals can conspire to create features in apparent violation of the classic theory.


Assuntos
Cistina/química , Microscopia de Força Atômica/métodos , Modelos Moleculares , Conformação Molecular , Simulação por Computador , Cristalização
14.
J Am Chem Soc ; 136(14): 5481-90, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24625095

RESUMO

Crystal optical properties of banded spherulites of 21 different compounds--molecular crystals, polymers, and minerals--with helically twisted fibers were analyzed with Mueller matrix polarimetry. The well-established radial oscillations in linear birefringence of many polycrystalline ensembles is accompanied by oscillations in circular birefringence that cannot be explained by the natural optical activity of corresponding compounds, some of which are centrosymmetric in the crystalline state. The circular birefringence is shown to be a consequence of misoriented, overlapping anisotropic lamellae, a kind of optical activity associated with the mesoscale stereochemistry of the refracting components. Lamellae splay as a consequence of space constraints related to simultaneous twisting of anisometric lamellae. This mechanism is supported by quantitative simulations of circular birefringence arising from crystallite twisting and splaying under confinement.

15.
Angew Chem Int Ed Engl ; 53(3): 672-99, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24382661

RESUMO

Crystals of a variety of substances including elements, minerals, simple salts, organic molecular crystals, and high polymers forgo long-range translational order by twisting and bending as they grow. These deviations have been observed in crystals ranging in size from nanometers to centimeters. How and why so many materials choose dramatic non-crystallographic distortions is analyzed, with an emphasis on crystal chemistries that give rise to stresses operating either on surfaces of crystallites or within the bulk.

16.
Cryst Growth Des ; 24(12): 5276-5284, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38911134

RESUMO

Disorder is a common feature of molecular crystals that complicates determination of structures and can potentially affect electric and mechanical properties. Suppression of disorder is observed in otherwise severely disordered benzamide and thiobenzamide crystals by substituting hydrogen with fluorine in the ortho-position of the phenyl ring. Fluorine occupancies of 20-30% are sufficient to suppress disorder without changing the packing motif. Crystal structure prediction calculations reveal a much denser lattice energy landscape for benzamide compared to 2-fluorobenzamide, suggesting that fluorine substitution makes disorder less likely.

17.
Chem Mater ; 36(2): 881-891, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38282684

RESUMO

Helicoidal crystallites in rhythmically banded spherulites manifest spectacular optical patterns in small molecules and polymers. It is shown that concentric optical bands indicating crystallographic orientations typically lose coherence (in-phase twisting) with growth from the center of nucleation. Here, coherence is shown to increase as the twist period decreases for seven molecular crystals grown from the melt. This dependence was correlated to crystallite fiber thickness and length, as well as crystallite branching frequency, a parameter that was extracted from scanning electron micrographs, and supported by numerical simulations. Hole mobilities for 2,5-didodecyl-3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (DPP-C12) measured by using organic field-effect transistors demonstrated that more incoherent boundaries between optical bands in spherulites lead to higher charge transport for films with the same twist period. This was rationalized by combining our growth model with electrodynamic simulations. This work illustrates the emergence of complexity in crystallization processes (spherulite formation) that arises in the extra variable of helicoidal radial twisting. The details of the patterns analyzed here link the added complexity in crystal growth to the electronic and optical properties of the thin films.

18.
Chem Mater ; 36(5): 2432-2440, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38495899

RESUMO

Many long-lasting insecticidal bed nets for protection against disease vectors consist of poly(ethylene) fibers in which insecticide is incorporated during manufacture. Insecticide molecules diffuse from within the supersaturated polymers to surfaces where they become bioavailable to insects and often crystallize, a process known as blooming. Recent studies revealed that contact insecticides can be highly polymorphic. Moreover, insecticidal activity is polymorph-dependent, with forms having a higher crystal free energy yielding faster insect knockdown and mortality. Consequently, the crystallographic characterization of insecticide crystals that form on fibers is critical to understanding net function and improving net performance. Structural characterization of insecticide crystals on bed net fiber surfaces, let alone their polymorphs, has been elusive owing to the minute size of the crystals, however. Using the highly polymorphous compound ROY (5-methyl-2-[(2-nitrophenyl)-amino]thiophene-3-carbonitrile) as a proxy for insecticide crystallization, we investigated blooming and crystal formation on the surface of extruded poly(ethylene) fibers containing ROY. The blooming rates, tracked from the time of extrusion, were determined by UV-vis spectroscopy after successive washes. Six crystalline polymorphs (of the 13 known) were observed on poly(ethylene) fiber surfaces, and they were identified and characterized by Raman microscopy, scanning electron microscopy, and 3D electron diffraction. These observations reveal that the crystallization and phase behavior of polymorphs forming on poly(ethylene) fibers is complex and dynamic. The characterization of blooming and microcrystals underscores the importance of bed net crystallography for the optimization of bed net performance.

19.
Cryst Growth Des ; 24(3): 1284-1292, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38344671

RESUMO

Four crystalline polymorphs of the proinsecticide chlorfenapyr [4-bromo-2-(4-chlorophenyl)-1-ethoxymethyl-5-trifluoromethyl-1H-pyrrole-3-carbonitrile] have been identified and characterized by polarized light optical microscopy, differential scanning calorimetry, Raman spectroscopy, X-ray diffraction, and electron diffraction. Three of the four structures were considered polytypic. Chlorfenapyr polymorphs show similar lethality against fruit flies (Drosophila melanogaster) and mosquitoes (Anopheles quadrimaculatus) with the least stable polymorph showing slightly higher lethality. Similar activities may be expected to be consistent with structural similarities. Knockdown kinetics, however, depend on an internal metabolic activating step, which further complicates polymorph-dependent bioavailability.

20.
Cryst Growth Des ; 24(2): 613-626, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38250542

RESUMO

The performance of crystalline organic semiconductors depends on the solid-state structure, especially the orientation of the conjugated components with respect to device platforms. Often, crystals can be engineered by modifying chromophore substituents through synthesis. Meanwhile, dissymetry is necessary for high-tech applications like chiral sensing, optical telecommunications, and data storage. The synthesis of dissymmetric molecules is a labor-intensive exercise that might be undermined because common processing methods offer little control over orientation. Crystal twisting has emerged as a generalizable method for processing organic semiconductors and offers unique advantages, such as patterning of physical and chemical properties and chirality that arises from mesoscale twisting. The precession of crystal orientations can enrich performance because achiral molecules in achiral space groups suddenly become candidates for the aforementioned technologies that require dissymetry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA