Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(35): e2300804, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37183292

RESUMO

The rational design of the directional charge transfer channel represents an important strategy to finely tune the charge migration and separation in photocatalytic CO2 -to-fuel conversion. Despite the progress made in crafting high-performance photocatalysts, developing elegant photosystems with precisely modulated interfacial charge transfer feature remains a grand challenge. Here, a facile one-pot method is developed to achieve in situ self-assembly of Pd nanocrystals (NYs) on the transition metal chalcogenide (TMC) substrate with the aid of a non-conjugated insulating polymer, i.e., branched polyethylenimine (bPEI), for photoreduction of CO2 to syngas (CO/H2 ). The generic reducing capability of the abundant amine groups grafted on the molecular backbone of bPEI fosters the homogeneous growth of Pd NYs on the TMC framework. Intriguingly, the self-assembled TMCs@bPEI@Pd heterostructure with bi-directional spatial charge transport pathways exhibit significantly boosted photoactivity toward CO2 -to-syngas conversion under visible light irradiation, wherein bPEI serves as an efficient hole transfer mediator, and simultaneously Pd NYs act as an electron-withdrawing modulator for accelerating spatially vectorial charge separation. Furthermore, in-depth understanding of the in situ formed intermediates during the CO2 photoreduction process are exquisitely probed. This work provides a quintessential paradigm for in situ construction of multi-component heterojunction photosystem for solar-to-fuel energy conversion.

2.
Inorg Chem ; 62(1): 520-529, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36563080

RESUMO

Metal nanoclusters (NCs) have been unleashed as an emerging category of metal materials by virtue of integrated merits including the unusual atom-stacking mode, quantum confinement effect, and fruitful catalytically active sites. Nonetheless, development of metal NCs as photosensitizers is blocked by light-induced instability and ultrashort carrier lifespan, which remarkably retards the design of metal NC-involved photosystems, hence resulting in the decreased photoactivities. To solve these obstacles, herein, we conceptually probed the charge transfer characteristics of the BiVO4 photoanode photosensitized by atomically precise alloy metal NCs, wherein tailor-made l-glutathione-capped gold-silver bimetallic (AuAg) NCs were controllably self-assembled on the BiVO4 substrate. It was uncovered that alien Ag atom doping is able to effectively stabilize the alloy AuAg NCs and simultaneously photosensitize the BiVO4 photoanode, significantly boosting the photoelectrochemical (PEC) water oxidation performances. The reasons for the robust and stable PEC water oxidation activities of the AuAg NCs/BiVO4 composite photoanode were unambiguously unleashed. We ascertain that Ag atom doping in the staple motif of Aux NCs efficaciously protects the NCs from rapid oxidation, enhancing the photostability, boosting the photosensitization efficiency, and thus leading to the considerably improved PEC water splitting activities compared with the homometallic counterpart. This work could afford a new strategy to judiciously tackle the inherent detrimental instability of metal NCs for solar energy conversion.

3.
Mol Cancer ; 21(1): 52, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35164788

RESUMO

Abnormal N6-methyladenosine (m6A) modification is closely associated with the occurrence, development, progression and prognosis of cancer, and aberrant m6A regulators have been identified as novel anticancer drug targets. Both traditional medicine-related approaches and modern drug discovery platforms have been used in an attempt to develop m6A-targeted drugs. Here, we provide an update of the latest findings on m6A modification and the critical roles of m6A modification in cancer progression, and we summarize rational sources for the discovery of m6A-targeted anticancer agents from traditional medicines and computer-based chemosynthetic compounds. This review highlights the potential agents targeting m6A modification for cancer treatment and proposes the advantage of artificial intelligence (AI) in the discovery of m6A-targeting anticancer drugs. Three stages of m6A-targeting anticancer drug discovery: traditional medicine-based natural products, modern chemical modification or synthesis, and artificial intelligence (AI)-assisted approaches for the future.


Assuntos
Inteligência Artificial , Neoplasias , Adenosina/química , Descoberta de Drogas , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Prognóstico
4.
PLoS Pathog ; 16(8): e1008766, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32857822

RESUMO

Pathogens commonly disrupt the intestinal epithelial barrier; however, how the epithelial immune system senses the loss of intestinal barrier as a danger signal to activate self-defense is unclear. Through an unbiased approach in the model nematode Caenorhabditis elegans, we found that the EGL-44/TEAD transcription factor and its transcriptional activator YAP-1/YAP (Yes-associated protein) were activated when the intestinal barrier was disrupted by infections with the pathogenic bacterium Pseudomonas aeruginosa PA14. Gene Ontology enrichment analysis of the genes containing the TEAD-binding sites revealed that "innate immune response" and "defense response to Gram-negative bacterium" were two top significantly overrepresented terms. Genetic inactivation of yap-1 and egl-44 significantly reduced the survival rate and promoted bacterial accumulation in worms after bacterial infections. Furthermore, we found that disturbance of the E-cadherin-based adherens junction triggered the nuclear translocation and activation of YAP-1/YAP in the gut of worms. Although YAP is a major downstream effector of the Hippo signaling, our study revealed that the activation of YAP-1/YAP was independent of the Hippo pathway during disruption of intestinal barrier. After screening 10 serine/threonine phosphatases, we identified that PP2A phosphatase was involved in the activation of YAP-1/YAP after intestinal barrier loss induced by bacterial infections. Additionally, our study demonstrated that the function of YAP was evolutionarily conserved in mice. Our study highlights how the intestinal epithelium recognizes the loss of the epithelial barrier as a danger signal to deploy defenses against pathogens, uncovering an immune surveillance program in the intestinal epithelium.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Permeabilidade da Membrana Celular , Células Epiteliais/imunologia , Microbioma Gastrointestinal/imunologia , Salmonelose Animal/imunologia , Salmonella typhimurium/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Camundongos , Salmonelose Animal/metabolismo , Salmonelose Animal/microbiologia , Salmonelose Animal/patologia , Transdução de Sinais , Proteínas de Sinalização YAP
5.
Bioorg Med Chem Lett ; 65: 128717, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35390450

RESUMO

Tumor angiogenesis is an important biological process involved in the proliferation and migration of endothelial cells, regulated by Ang/Tie-2 signaling pathways, which is essential for tumor growth and metastasis. Therefore, blocking Ang/Tie-2 signaling pathways is a promising anti-angiogenic strategy for tumor treatment. 2,5-Diketopiperazines (DKPs) are a kind of bioactive compounds derived from marine fungi and they present a wide spectrum of pharmacological properties, particularly in the field of cancer treatment. Herein, a DKP marine natural product, Cryptoechinuline D (Cry D) was applied to structural modification and twelve derivatives were synthesized. Among which, compound 5 showed significant inhibitory activity against HUVECs with an IC50 value of 12.6 µmol/L, which weakened the proliferation, migration and invasion of HUVECs by inhibiting the Ang2/Tie-2 signaling pathway. The results of these evaluations indicated that compound 5 might be a promising anti-angiogeneic agent and worth further optimization and development for cancer therapy.


Assuntos
Produtos Biológicos , Neoplasias , Inibidores da Angiogênese/farmacologia , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Neoplasias/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo
6.
Inorg Chem ; 61(44): 17828-17837, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36274200

RESUMO

Transition-metal chalcogenides (TMCs) have received enormous attention by virtue of their large light absorption coefficient, abundant catalytically active sites, and markedly reduced spatially vectorial charge-transfer distance originating from generic structural merits. However, the controllable construction of TMC-based heterostructured photosystems for photocatalytic carbon dioxide (CO2) reduction is retarded by the ultrashort charge lifetime, sluggish charge-transfer kinetics, and low target product selectivity. Herein, we present the rational design of two-dimensional (2D)/zero-dimensional (0D) heterostructured CO2 reduction photosystems by an electrostatic self-assembly strategy, which is enabled by precisely anchoring CsPbBr3 quantum dots (QDs) on the 2D TMC (CdIn2S4, ZnIn2S4, In2S3) frameworks. The peculiar 2D/0D integration mode and suitable energy-level alignment between these two assembly units afford maximal interfacial contact and applicable potential for CO2 photoreduction, thus endowing the self-assembled TMCs/CsPbBr3 nanocomposites with considerably improved visible-light-driven photocatalytic performances toward CO2 reduction to carbon monoxide with high selectivity. The enhanced photocatalytic performances of TMCs/CsPbBr3 heterostructures are attributed to the abundant active sites on the TMC frameworks, excellent light absorption of CsPbBr3 QDs, and well-defined 2D/0D heterostructures of TMCs/CsPbBr3 QDs photosystems, which synergistically boosts the directional charge transport from CsPbBr3 QDs to TMCs, enhancing the interfacial charge migration/separation. Our work would inspire the construction of novel TMCs-involved photosystems for solar-to-fuel conversion.

7.
Inorg Chem ; 61(47): 19022-19030, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36377248

RESUMO

Atomically precise metal nanoclusters (NCs) have recently emerged as a promising sector of metal nanomaterials in terms of peculiar atomic stacking fashion, quantum confinement effect, and enriched catalytically active sites, which are wholly distinct from conventional metal nanocrystals (NYs) in all respects. However, atomically precise metal NCs inevitably suffer from intrinsic poor instability either under light irradiation or thermal treatment owing to the ultrahigh surface energy, thereby resulting in substantial loss of photosensitization efficiency and retarding their emerging utilization in photoredox catalysis. Here, we first conceptually reveal the charge transfer characteristic difference between atomically precise metal NCs and metal NYs attained by self-transformation in boosting interfacial charge migration and separation. The results signify that the interfacial charge transfer impetus of atomically precise metal NCs as a photosensitizer versus metal NYs as a Schottky-type electron-withdrawing mediator is closely associated with the loading amount on the semiconductor substrate. The photosensitization effect of atomically precise metal NCs is superior to the electron trapping capability of metal NYs when the loading amount of the metal ingredient is relatively high and vice versa. Our work would significantly bridge the gap between atomically precise metal NCs and metal NYs in fine tuning of the charge transfer pathway in photocatalysis toward solar energy conversion.

8.
Oecologia ; 196(2): 341-352, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33966105

RESUMO

While the effects of incubation environment on embryonic development and offspring traits have been extensively studied in oviparous vertebrates, studies into how genetic inheritance (population origin), maternal effects, and incubation environment interact to produce varying phenotypes, are rare. To elucidate the interactive role of those three factors during incubation in shaping offspring phenotypes through hydric conditions, we conducted a fully factorial experiment [arid and semiarid populations × maternal dry and wet treatments (MDT and MWT) × embryonic dry and wet treatments (EDT and EWT)] with a desert-dwelling lacertid lizard (Eremias argus). Female lizards in dry conditions produced larger clutch sizes but smaller eggs. The incubation period and hatching success were significantly affected by embryonic but not by maternal moisture treatments. Eggs in the EDT hatched later than those in the EWT in both arid and semiarid populations. Hatching success was lower in EDT than in EWT in the semiarid population, but not in the arid population. Hatchlings from the EDT had a slower post-hatch increase in body mass than those from the EWT. EDT would decrease the survival rates of hatchlings in the semiarid population only. In addition, structural equation models revealed that population had a stronger effect on embryonic and offspring survival than maternal and embryonic moisture. Our study demonstrates locally adaptive strategies of drought resistance at multiple life-history stages in lizard populations from diverse hydric habitats and highlights the importance of genetic factors in determining embryonic drought resistance in oviparous lizards.


Assuntos
Lagartos , Animais , Tamanho da Ninhada , Desenvolvimento Embrionário , Feminino , Herança Materna , Fenótipo
9.
Plant Dis ; 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33406861

RESUMO

Plum is commercially cultivated worldwide for the rich nutrient in its fruit. In May 2019, plum with symptoms of fruit rot were collected from fields located in Liuma town, Guizhou Province, China. The incidence of the disease varied from 10 to 20%, which was observed in 15 plum orchards (18 hectares) surveyed. Estimated yield loss was~5 to 10% for each field. Diseased fruits showed deformity, wilting and sunken lesions, and subsequenly became melanized and rotted. Diseased tissues were surface disinfected with 70% ethanol for 45 s and rinsed with sterile distilled water three times. Four morphologically similar colonies with white fluffy aerial mycelium and a reddish pigment were obtained after 3 days incubation on potato dextrose agar (PDA) at 25°C. Four single-spore isolates produced conidia with 1 to 2 septa that were sickle-shaped, thin-walled with a tapering and curved apical cell, measuring 15.6 to 29.6 × 4.8 to 8.7 µm (average 19.5×5.9 µm, n=50). Based on the cultural and conidial morphology, the isolates were identified as Fusarium (Mun et al. 2012; Leslie and Summerell 2006). DNA of two isolates was extracted using the Ezup Column Fungal Genomic DNA Extraction Kit (Sangon Bioengineering Shanghai, LTD.). To confirm the morphological diagnosis, DNA sequence data from three loci were obtained. PCR amplification was carried out with universal primers ITS1/ITS4 (White et al. 1990), translation elongation factor (EF-1α), EF1-H (5'-ATGGGTAAGGAAGACAAGAC-3') and EF2-T (5'-GGAAGTACCAGTGATCATGTT-3') (O'Donnell et al. 1998) and the second largest subunit of RNA polymerase II (RPB2), 5F2(5'-GGGGWGAYCAGAAGAAGGC-3') and 7cR (5'-CCCATRGCTTGYTTRCCCAT-3') (O'Donnell et al. 2007). Primers ITS1 and ITS4 produced a 559-bp amplicon (GenBank accession. MW085028). BLAST analysis showed 100% sequence identity to sequences of several species, deposited in GenBank, including F. fujikuroi. The EF-1α sequence (MW086868) was 100% identical to that of Fusarium fujikuroi (MN193860.1). The RPB2 primers amplified a fragment (MW086869) that was 99.9% identical to that of F. fujikuroi (MN193888.1). The BLASTn results based on the partial EF-1α and RPB2 sequences suggest isolate HJGF1 is F. fujikuroi. A pathogenicity assay was conducted using an agar disk inoculation method on plum. Fruits were stab inoculated with HJGF1 by piercing 1-mm at 3 points using a sterile needle, and fruits were mock inoculated with sterile PDA, each fruit was inoculated with three disks. (Fig. 1). The treated fruit were maintained in a growth chamber with 90% relative humidity at 25°C, and a daily 12-h photoperiod. After 5 days, the artificially inoculated fruit showed blotches with sunken lesions similar to those observed in the orchards, whereas no symptoms were observed on the control fruit. The experiment was repeated twice with similar results. F. fujikuroi was reisolated from infected tissues and confirmed by sequence analysis. To our knowledge, this is the first report of F. fujikuroi causing fruit blotch of plum in China. Considering the economic importance of plum in China and throughout the world, F. fujikuroi may be an emerging problem for plum cultivation. Thus, further study of fruit blotch of plum is warranted.

10.
Can J Infect Dis Med Microbiol ; 2021: 8838444, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33680221

RESUMO

OBJECTIVE: Candida glabrata (C. glabrata) causes infections associated with severe sepsis and high mortality. This study describes the effects of micafungin (MCF), itraconazole (ICZ), and amphotericin B (AmB) on the function of macrophages during C. glabrata infection. METHODS: RAW264.1 macrophages were treated with MCF, ICZ, or AmB and then challenged with C. glabrata. Cytokines from infected macrophage supernatants and the levels of superoxide dismutase (SOD) in macrophages were measured at different time points after phagocytosis. RESULTS: The activity of SOD was significantly increased in RAW264.1 cells that phagocytized C. glabrata and reached a peak level at 6 hours (P < 0.05). ICZ and AmB did not affect the SOD activity in cells that phagocytized C. glabrata versus that in untreated macrophage. C. glabrata stimulated macrophages to secrete cytokines. Neither ICZ nor AmB affected the secretion of interleukin-6 (IL-6), interleukin-8 (IL-8), or tumor necrosis factor-α (TNF-α) by C. glabrata-infected macrophages. However, MCF downregulated the secretion of TNF-α by infected macrophages and reduced the SOD activity of C. glabrata compared with those in untreated controls. CONCLUSION: Echinocandins may increase their antifungal efficacy by altering the innate immune response of macrophages and attenuating antioxidants of this organism.

11.
Sensors (Basel) ; 20(2)2020 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-31963789

RESUMO

Disk-shaped torque sensors are widely used in robotic joints and wheel driving. However, in terms of conventional spoke-type geometries, there is always a trade-off between sensitivity and stiffness, because their strain exposure depends upon a bending deformation mode which causes strain nonuniformity. This paper presents a lever-type method of strain exposure that performs a uniaxial tension and compression deformation mode to optimize the strain uniformity and improve the trade-off. Moreover, on the basis of this approach, the proposed disk F-shaped torque sensor enjoys has axial thinness, easy installation of strain gauges and flexible customization. The simulation and experimental results have validated the basic design idea.

12.
J Therm Biol ; 93: 102731, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33077142

RESUMO

Understanding the factors that may affect behavioural thermoregulation of endangered reptiles is important for their conservation because thermoregulation determines body temperatures and in turn physiological functions of these ectotherms. Here we measured seasonal variation in operative environmental temperature (Te), body temperature (Tb), and microhabitat use of endangered crocodile lizards (Shinisaurus crocodilurus) from a captive population, within open and shaded enclosures, to understand how they respond to thermally challenging environments. Te was higher in open enclosures than in shaded enclosures. The Tb of lizards differed between the open and shaded enclosures in summer and autumn, but not in spring. In summer, crocodile lizards stayed in the water to avoid overheating, whereas in autumn, crocodile lizards perched on branches seeking optimal thermal environments. Crocodile lizards showed higher thermoregulatory effectiveness in open enclosures (with low thermal quality) than in shaded enclosures. Our study suggests that the crocodile lizard is capable of behavioural thermoregulation via microhabitat selection, although overall, it is not an effective thermoregulator. Therefore, maintaining diverse thermal environments in natural habitats for behavioural thermoregulation is an essential measure to conserve this endangered species both in the field and captivity.


Assuntos
Comportamento Animal , Temperatura Corporal , Lagartos/fisiologia , Termotolerância , Animais , Ecossistema , Espécies em Perigo de Extinção , Estações do Ano
13.
Eur J Nutr ; 57(5): 1957-1967, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28573457

RESUMO

PURPOSE: Mitochondrial dysfunction plays an important role in the development of obesity and obesity-associated metabolic diseases. METHODS: In this study, we dynamically observed the characteristics of mitochondrial damage in a rat model of diet-induced obesity (DIO). From the 2nd to the 10th week, animals were killed every 2 weeks and the heart, liver, kidney, and testicular tissues were harvested. Mitochondria were isolated and the activities of respiratory chain complexes I, II, III, and IV as well as the 8-Hydroxy-2-deoxy Guanosine content were determined. Reactive oxygen species and malondialdehyde were measured. RESULTS: Mitochondrial damages were observed in the heart and liver of DIO and DR rats, and the damages occurred later in DR group than that in DIO group. The mitochondrial membrane potential of heart and liver decreased in DIO and DR groups. The activity of the heart mitochondria complexes I, III, and IV (composing NADH oxidative respiratory) was higher in the early stage of DIO and lower in the end of week 10. The higher activity of the liver complexes I, III, and IV was found until the end of week 10 in DIO and DR groups, accompanied with enhanced oxidative stress. Besides, mitochondrial DNA damages were observed in all tissues. CONCLUSION: In DIO rats, the heart mitochondrial dysfunction occurred first and the liver presented the strongest compensatory ability against oxidative stress.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Transporte de Elétrons/fisiologia , Obesidade/complicações , Estresse Oxidativo/fisiologia , Animais , Masculino , Malondialdeído/metabolismo , Mitocôndrias/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio
14.
Chemistry ; 22(27): 9299-304, 2016 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-27243145

RESUMO

Two novel polyoxometalate (POM)-based coordination polymers, namely, [Co(bpz)(Hbpz)][Co(SO4 )0.5 (H2 O)2 (bpz)]4 [PMo(VI) 8 Mo(V) 4 V(IV) 4 O42 ]⋅13 H2 O (NENU-530) and [Ni2 (bpz)(Hbpz)3 (H2 O)2 ][PMo(VI) 8 Mo(V) 4 V(IV) 4 O44 ]⋅8 H2 O (NENU-531) (H2 bpz=3,3',5,5'-tetramethyl-4,4'-bipyrazole), were isolated by hydrothermal methods, which represented 3D networks constructed by POM units, the protonated ligand and sulfate group. In contrast with most POM-based coordination polymers, these two compounds exhibit exceptional excellent chemical and thermal stability. More importantly, NENU-530 shows a high proton conductivity of 1.5×10(-3)  S cm(-1) at 75 °C and 98 % RH, which is one order of magnitude higher than that of NENU-531. Furthermore, structural analysis and functional measurement successfully demonstrated that the introduction of sulfate group is favorable for proton conductivity. Herein, the syntheses, crystal structures, proton conductivity, and the relationship between structure and property are presented.

15.
Oecologia ; 182(4): 961-971, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27638182

RESUMO

Extreme high temperatures are occurring more frequently with ongoing anthropogenic climate warming, but the experimental tests of the effects of high temperatures on terrestrial vertebrates in natural conditions are rare. In this study, we investigated the effects of extreme high temperatures on female reproduction and offspring traits of multi-ocellated racerunners (Eremias multiocellata) kept in field enclosures in the desert steppe of Inner Mongolia. Our studies indicate that high temperatures significantly affect the gestation period and reproductive output of females and the offspring sex ratio, but have little impact on offspring body size and mass. More interestingly, we found that the effect of extreme high temperatures on female reproductive output was not consistent between two consecutive years that differed in precipitation. Low precipitation may aggravate the impact of climate warming on lizards and negatively affect the survival of lizards in the desert steppe. Our results provide evidence that temperature interacts with precipitation to determine the life history of lizards, and they suggest that a drier and hotter environment, such as the future climate in arid mid-latitude areas, will likely impose severe pressure on lizard populations, which are an important component of the food web in desert areas around the world.


Assuntos
Lagartos , Temperatura , Animais , Tamanho Corporal , Clima , Reprodução
16.
Chemistry ; 21(27): 9784-9, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26015079

RESUMO

A series of isoreticular metal-organic frameworks (MOFs; NENU-511-NENU-514), which all have high surface areas and strong adsorption capacities, have been successfully constructed by using mixed ligands. NENU-513 has the highest benzene capacity of 1687 mg g(-1) at 298 K, which ranks as the top MOF material among those reported up to now. This NENU series has been used for adsorptive desulfurization because of its permanent porosity. The results indicate that this series has a higher adsorptive efficiency in the removal of organosulfur compounds than other MOF materials, especially NENU-511, which has the highest adsorptive efficiency in the ambient atmosphere. This study proves that the design and synthesis of targeted MOFs with higher surface areas and with functional groups present is an efficient method to enhance benzene-storage capacity and the adsorption of organosulfur compounds.

17.
Inorg Chem ; 54(7): 3290-6, 2015 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-25768042

RESUMO

A stable porous carbazole-based luminescent metal-organic framework, NENU-522, was successfully constructed. It is extremely stable in air and acidic/basic aqueous solutions, which provides the strategy for luminescent material encapsulation of Ln(3+) ions with tunable luminescence for application in light emission. More importantly, Ln(3+)@NENU-522 can emit white light by encapsulating different molar ratios of Eu(3+) and Tb(3+) ions. Additionally, Tb(3+)@NENU-522 is found to be useful as a fluorescent indicator for the qualitative and quantitative detection of nitroaromatic explosives with different numbers of -NO2 groups, and the concentrations of complete quenching are about 2000, 1000, and 80 ppm for nitrobenzene, 1,3-dinitrobenzene, and 2,4,6-trinitrophenol, respectively. Meanwhile, Tb(3+)@NENU-522 displays high selectivity and recyclability in the detection of nitroaromatic explosives.


Assuntos
Substâncias Explosivas/análise , Elementos da Série dos Lantanídeos/química , Luz , Nitrocompostos/química , Compostos Organometálicos/química , Cristalografia por Raios X , Substâncias Explosivas/química , Luminescência
18.
Chemistry ; 20(19): 5625-30, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24677301

RESUMO

Herein, a novel anionic framework with primitive centered cubic (pcu) topology, [(CH3 )2 NH2 ]4 [(Zn4 dttz6 )Zn3 ]⋅15 DMF⋅4.5 H2 O, (IFMC-2; H3 dttz=4,5-di(1H-tetrazol-5-yl)-2H-1,2,3-triazole) was solvothermally isolated. A new example of a tetranuclear zinc cluster {Zn4 dttz6 } served as a secondary building unit in IFMC-2. Furthermore, the metal cluster was connected by Zn(II) ions to give rise to a 3D open microporous structure. The lanthanide(III)-loaded metal-organic framework (MOF) materials Ln(3+) @IFMC-2, were successfully prepared by using ion-exchange experiments owing to the anionic framework of IFMC-2. Moreover, the emission spectra of the as-prepared Ln(3+) @IFMC-2 were investigated, and the results suggested that IFMC-2 could be utilized as a potential luminescent probe toward different Ln(3+) ions. Additionally, the absorption ability of IFMC-2 toward ionic dyes was also performed. Cationic dyes can be absorbed, but not neutral and anionic dyes, thus indicating that IFMC-2 exhibits selective absorption toward cationic dyes. Furthermore, the cationic dyes can be gradually released in the presence of NaCl.

19.
Chemistry ; 20(13): 3589-94, 2014 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-24577888

RESUMO

A 2D, extremely stable, metal-organic framework (MOF), NENU-503, was successfully constructed. It displays highly selective and recyclable properties in detection of nitroaromatic explosives as a fluorescent sensor. This is the first MOF that can distinguish between nitroaromatic molecules with different numbers of NO2 groups.


Assuntos
Substâncias Explosivas/análise , Nitrocompostos/análise , Fluorescência , Estrutura Molecular , Nitrocompostos/química
20.
Inorg Chem ; 53(15): 8105-13, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-25052891

RESUMO

In this work, five novel 2D isostructural Cd(II)-lanthanide(III) heterometallic-organic frameworks [CdCl(L)Eu(x)Tb(y)(H2O)(DMA)](NO3)·3DMA (IFMC-36-Eu(x)Tb(y): x = 1, y = 0, IFMC-36-Eu; x = 0.6, y = 0.4, IFMC-36-Eu(0.6)Tb(0.4); x = 0.5, y = 0.5, IFMC-36-Eu(0.5)Tb(0.5); x = 0.4, y = 0.6, IFMC-36-Eu(0.4)Tb(0.6); x = 0, y = 1, IFMC-36-Tb; H3L is 4,4',4″-((2,2',2″-(nitrilotris(methylene))tris(1H-benzo[d]imidazole-2,1-diyl))tris(methylene))tribenzoic acid; IFMC = Institute of Functional Material Chemistry) have been successfully synthesized by taking advantage of different molar ratios of lanthanide(III) (Ln(III)) and metalloligands under solvothermal conditions. Further luminescent measurements indicate that IFMC-36-Eu(x)Tb(y) exhibits characteristic sharp emission bands of Eu(III) and Tb(III), and the intensities of red and green can be modulated correspondingly by tuning the ratios of Eu(III) and Tb(III). Particularly, the solvent-dependent luminescent behavior of IFMC-36-Eu shows a potential application in detection of small-molecule pollutant nitrobenzene by significant fluorescence quenching. Furthermore, IFMC-36-Eu displays preeminent anti-interference ability and could be used for sensing in the systems with complicated components. This is the first time that a d-f heterometallic-organic framework can be investigated as a chemical sensor for selective, sensitive, and recyclable detection of nitrobenzene.


Assuntos
Cádmio/química , Elementos da Série dos Lantanídeos/química , Nitrobenzenos/análise , Compostos Organometálicos/química , Ligantes , Medições Luminescentes , Nitrobenzenos/química , Compostos Organometálicos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA