Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell Mol Life Sci ; 81(1): 303, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008099

RESUMO

Vitamin C (VC) serves as a pivotal nutrient for anti-oxidation process, metabolic responses, and stem cell differentiation. However, its precise contribution to placenta development and gestation remains obscure. Here, we demonstrated that physiological levels of VC act to stabilize Hand1, a key bHLH transcription factor vital for the development trajectory of trophoblast giant cell (TGC) lineages, thereby promoting the differentiation of trophoblast stem cells into TGC. Specifically, VC administration inactivated c-Jun N-terminal kinase (JNK) signaling, which directly phosphorylates Hand1 at Ser48, triggering the proteasomal degradation of Hand1. Conversely, a loss-of-function mutation at Ser48 on Hand1 not only significantly diminished both intrinsic and VC-induced stabilization of Hand1 but also underscored the indispensability of this residue. Noteworthy, the insufficiency of VC led to severe defects in the differentiation of diverse TGC subtypes and the formation of labyrinth's vascular network in rodent placentas, resulting in failure of maintenance of pregnancy. Importantly, VC deficiency, lentiviral knockdown of JNK or overexpression of Hand1 mutants in trophectoderm substantially affected the differentiation of primary and secondary TGC in E8.5 mouse placentas. Thus, these findings uncover the significance of JNK inactivation and consequential stabilization of Hand1 as a hitherto uncharacterized mechanism controlling VC-mediated placentation and perhaps maintenance of pregnancy.


Assuntos
Ácido Ascórbico , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Diferenciação Celular , Proteínas Quinases JNK Ativadas por Mitógeno , Placentação , Trofoblastos , Animais , Feminino , Gravidez , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Placentação/genética , Camundongos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Diferenciação Celular/efeitos dos fármacos , Trofoblastos/metabolismo , Trofoblastos/efeitos dos fármacos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Placenta/metabolismo , Fosforilação , Humanos , Camundongos Endogâmicos C57BL
2.
Am J Physiol Lung Cell Mol Physiol ; 318(5): L888-L899, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32130032

RESUMO

We have previously demonstrated that upregulation of Sonic hedgehog (SHH) expression in allergic airway epithelia essentially contributes to the goblet cell metaplasia and mucous hypersecretion. However, the mechanism underlying the upregulation of SHH expression remains completely unknown. In cultured human airway epithelial cells, IL-4/IL-13 but not IL-5 robustly induces the mRNA and protein expression of SHH and in turn activates SHH signaling by promoting the JAK/STAT6-controlling transcription of SHH gene. Moreover, intratracheal instillation of IL-4 and/or IL-13 robustly activates STAT6 and concomitantly upregulates SHH expression in mouse airway epithelia, whereas, in Club cell 10-kDa protein (CC10)-positive airway epithelial cells of children with asthma, activated STAT6 closely correlates with the increased expression of SHH and high activity of SHH signaling. Finally, intratracheal inhibition of STAT6 by AS-1517499 significantly diminished the allergen-induced upregulation of SHH expression, goblet cell phenotypes, and airway hyperresponsiveness, in an ovalbumin- or house dust mite-induced mouse model with allergic airway inflammation,. Together, upregulation of SHH expression by IL-4/IL-13-induced JAK/STAT6 signaling contributes to allergic airway epithelial remodeling, and this study thus provides insight into how morphogen signaling is coordinated with Th2 cytokine pathways to regulate tissue remodeling in chronic airway diseases.


Assuntos
Asma/genética , Proteínas Hedgehog/genética , Interleucina-13/genética , Interleucina-4/genética , Mucosa Respiratória/imunologia , Animais , Antiasmáticos/farmacologia , Asma/induzido quimicamente , Asma/tratamento farmacológico , Asma/patologia , Linhagem Celular , Criança , Feminino , Regulação da Expressão Gênica , Células Caliciformes/efeitos dos fármacos , Células Caliciformes/imunologia , Células Caliciformes/patologia , Proteínas Hedgehog/imunologia , Humanos , Interleucina-13/imunologia , Interleucina-13/farmacologia , Interleucina-4/imunologia , Interleucina-4/farmacologia , Interleucina-5/genética , Interleucina-5/imunologia , Janus Quinases/genética , Janus Quinases/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/administração & dosagem , Cultura Primária de Células , Pirimidinas/farmacologia , Pyroglyphidae/química , Pyroglyphidae/imunologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/patologia , Fator de Transcrição STAT6/antagonistas & inibidores , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/imunologia , Transdução de Sinais , Transcrição Gênica , Uteroglobina/genética , Uteroglobina/imunologia
3.
Redox Biol ; 56: 102420, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35969998

RESUMO

Vitamin C (VC, l-ascorbic acid) is an essential nutrient that plays a key role in metabolism and functions as a potent antioxidant in regulating the S-nitrosylation and denitrosylation of target proteins. The precise function of VC deprivation in glucose homeostasis is still unknown. In the absence of L-gulono-1,4-lactone oxidoreductase, an essential enzyme for the last step of VC synthesis, VC deprivation resulted in persistent hypoglycemia and subsequent impairment of cognitive functions in female but not male mouse pups. The cognitive disorders caused by VC deprivation were largely reversed when these female pups were given glucose. VC deprivation-induced S-nitrosylation of glycogen synthase kinase 3ß (GSK3ß) at Cys14, which activated GSK3ß and inactivated glycogen synthase to decrease glycogen synthesis and storage under the feeding condition, while VC deprivation inactivated glycogen phosphorylase to decrease glycogenolysis under the fasting condition, ultimately leading to hypoglycemia and cognitive disorders. Treatment with Nω-Nitro-l-arginine methyl ester (l-NAME), a specific inhibitor of nitric oxide synthase, on the other hand, effectively prevented S-nitrosylation and activation of GSK3ß in female pups in response to the VC deprivation and reversed hypoglycemia and cognitive disorders. Overall, this research identifies S-nitrosylation of GSK3ß and subsequent GSK3ß activation as a previously unknown mechanism controlling glucose homeostasis in female pups in response to VC deprivation, implying that VC supplementation in the prevention of hypoglycemia and cognitive disorders should be considered in the certain groups of people, particularly young females.


Assuntos
Deficiência de Ácido Ascórbico , Cognição , Hipoglicemia , Transtornos Neurocognitivos , Animais , Antioxidantes , Ácido Ascórbico/farmacologia , Deficiência de Ácido Ascórbico/complicações , Deficiência de Ácido Ascórbico/metabolismo , Feminino , Glucose/metabolismo , Glicogênio/metabolismo , Glicogênio Fosforilase , Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Hipoglicemia/etiologia , Hipoglicemia/metabolismo , Lactonas , Camundongos , NG-Nitroarginina Metil Éster/farmacologia , Transtornos Neurocognitivos/etiologia , Transtornos Neurocognitivos/metabolismo , Óxido Nítrico Sintase
4.
Metabolism ; 136: 155295, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36007622

RESUMO

OBJECTIVE: Prader-Willi syndrome (PWS) is a rare genetic imprinting disorder resulting from the expression loss of genes on the paternally inherited chromosome 15q11-13. Early-onset life-thriving obesity and hyperphagia represent the clinical hallmarks of PWS. The noncoding RNA gene SNORD116 within the minimal PWS genetic lesion plays a critical role in the pathogenesis of the syndrome. Despite advancements in understanding the genetic basis for PWS, the pathophysiology of obesity development in PWS remains largely uncharacterized. Here, we aimed to investigate the signatures of adipose tissue development and expansion pathways and associated adipose biology in PWS children without obesity-onset at an early stage, mainly from the perspective of the adipogenesis process, and further elucidate the underlying molecular mechanisms. METHODS: We collected inguinal (subcutaneous) white adipose tissues (ingWATs) from phase 1 PWS and healthy children with normal weight aged from 6 M to 2 Y. Adipose morphology and histological characteristics were assessed. Primary adipose stromal vascular fractions (SVFs) were isolated, cultured in vitro, and used to determine the capacity and function of white and beige adipogenic differentiation. High-throughput RNA-sequencing (RNA-seq) was performed in adipose-derived mesenchymal stem cells (AdMSCs) to analyze transcriptome signatures in PWS subjects. Transient repression of SNORD116 was conducted to evaluate its functional relevance in adipogenesis. The changes in alternative pre-mRNA splicing were investigated in PWS and SNORD116 deficient cells. RESULTS: In phase 1 PWS children, impaired white adipose tissue (WAT) development and unusual fat expansion occurred long before obesity onset, which was characterized by the massive enlargement of adipocytes accompanied by increased apoptosis. White and beige adipogenesis programs were impaired and differentiated adipocyte functions were disturbed in PWS-derived SVFs, despite increased proliferation capacity, which were consistent with the results of RNA-seq analysis of PWS AdMSCs. We also experimentally validated disrupted beige adipogenesis in adipocytes with transient SNORD116 downregulation. The transcript and protein levels of PPARγ, the adipogenesis master regulator, were significantly lower in PWS than in control AdMSCs as well as in SNORD116 deficient AdMSCs/adipocytes than in scramble (Scr) cells, resulting in the inhibited adipogenic program. Additionally, through RNA-seq, we observed aberrant transcriptome-wide alterations in alternative RNA splicing patterns in PWS cells mediated by SNORD116 loss and specifically identified a changed PRDM16 gene splicing profile in vitro. CONCLUSIONS: Imbalance in the WAT expansion pathway and developmental disruption are primary defects in PWS displaying aberrant adipocyte hypertrophy and impaired adipogenesis process, in which SNORD116 deficiency plays a part. Our findings suggest that dysregulated adiposity specificity existing at an early phase is a potential pathological mechanism exacerbating hyperphagic obesity onset in PWS. This mechanistic evidence on adipose biology in young PWS patients expands knowledge regarding the pathogenesis of PWS obesity and may aid in developing a new therapeutic strategy targeting disturbed adipogenesis and driving AT plasticity to combat abnormal adiposity and associated metabolic disorders for PWS patients.


Assuntos
Síndrome de Prader-Willi , Adipogenia/genética , Tecido Adiposo Branco/metabolismo , Criança , Humanos , Hiperfagia/metabolismo , Obesidade/metabolismo , PPAR gama , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/metabolismo , Precursores de RNA , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Expansão de Tecido
5.
Open Forum Infect Dis ; 7(8): ofaa314, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32875002

RESUMO

Major histocompatibility complex (MHC) II deficiency is a rare primary immunodeficiency disorder that is characterized by the deficiency of MHC class II molecules. The disease is caused by transcription factor mutations including class II transactivator (CIITA), regulatory factor X-5 (RFX5), RFX-associated protein (RFXAP), and RFXAP-containing ankyrin repeat (RFXANK), respectively. Mutations in the RFXANK gene account for >70% of all known patients worldwide. Herein, we reported a 10-month-old boy with MHC II deficiency caused by a novel mutation in the RFXANK gene (c.337 + 1G>C). The boy was admitted to the hospital due to pneumonia and diarrhea at 4 months of age. Genetic analysis revealed a novel homozygous mutation in the RFXANK gene, which derived from the c.337 + 1G>C heterozygous mutations in the RFXANK gene of his parents. The boy died 3 months after diagnosis. More than 200 cases have been reported, and a review of the literature revealed different mutation rates of 4 transcription factors in different countries or regions. This is the first case report of MHC II deficiency from East Asia. We also describe all gene mutations that cause MHC II deficiency and the epidemiology of MHC II deficiency with gene mutations in this paper.

6.
Org Lett ; 11(6): 1201-4, 2009 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-19222182

RESUMO

Introduction of a continuous internal hydrogen-bonding network suppressed the conformational flexibility of a series of oligoaromatic foldamers with a lengthened backbone. The helical ordering over up to six aromatic repeating units was established in solution by a 2D NOESY study and in the solid state by an X-ray diffraction method. Computational molecular modeling further corroborates the experimentally observed helical propagation in this class of foldable molecular strands.


Assuntos
Modelos Moleculares , Polímeros/química , Amidas/química , Cristalografia por Raios X , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Conformação Molecular , Estrutura Molecular
7.
Org Lett ; 10(22): 5127-30, 2008 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-18928289

RESUMO

Introduction of a continuous hydrogen-bonding network suppressed the conformational flexibility of an oligomeric backbone. Cyclization of a rigidified, suitably sized oligomer led to a circular aromatic pentamer. Its crystal structure determined by X-ray crystallography reveals a pseudo five-fold symmetric planarity in the solid state, which is quite unusual among all the previously described shape-persistent macrocycles and synthetic foldamers with biased conformations enforced by noncovalent forces.


Assuntos
Compostos Orgânicos/química , Cristalografia por Raios X , Ciclização , Espectroscopia de Ressonância Magnética , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA