Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 22(21): 8763-8770, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36154126

RESUMO

A carbon shell encapsulating a transition metal-based core has emerged as an intriguing type of catalyst structure, but the effect of the shell thickness on the catalytic properties of the buried components is not well known. Here, we present a proof-of-concept study to reveal the thickness effect by carbonizing the isotropic and homogeneous oleylamine (OAm) ligands that cover colloidal MoS2. A thermal treatment turns OAm into a uniform carbon shell, while the size of MoS2 monolayers remains identical. When evaluated toward an acidic hydrogen evolution reaction, the calcined MoS2 catalysts deliver a volcano-type activity trend that depends on the calcination temperature. Rutherford backscattering spectrometry and depth-profiling X-ray photoelectron spectroscopy consistently provide an accurate quantification of the carbon shell thickness. The same variation pattern of catalytic activity and carbon shell thickness, aided by kinetic studies, is then persuasively justified by the respective limitations of electron and proton conductivities on the two branches of the volcano curve.

2.
J Agric Food Chem ; 55(3): 741-6, 2007 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-17263469

RESUMO

Ilex paraguariensis A. St.-Hil. is used to prepare a traditional tealike beverage widely appreciated in Argentina, Paraguay, Uruguay, and southern Brazil. In these countries, the tea is popularly known as mate or chimarrão. The aim of this work is to characterize the elemental composition of commercial Ilex paraguariensis and determine the portion of each element present in the leaves that is eluted in the water during the infusion process and consequently ingested by the drinker. Using the particle-induced X-ray emission technique, we verified the presence of Mg, Al, Si, P, S, Cl, K, Ca, Ti, Mn, Fe, Cu, Zn, and Rb at different concentrations, which accounts for about 3.4% of the total mass. The results show a loss of about 90% of K and Cl, 50% of Mg and P, and 20% of Mn, Fe, Cu, Zn, and Rb by the leaves after the infusion. The volume of water used in the infusion affects only the concentration of elements such as Cl, P, K, and Mg until the first 600 mL of water, where a steep decrease in the concentration of these elements was observed in brewed leaves. Furthermore, higher water temperatures (typical temperatures used in infusions, between 80 and 100 degrees C) favor the extraction of K and Cl into the infusion, while the concentration of other elements remains practically constant as a function of temperature.


Assuntos
Elementos Químicos , Temperatura Alta , Ilex paraguariensis/química , Folhas de Planta/química , Água , Bebidas/análise , Metais/análise , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA