Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Toxicol Environ Health A ; 78(1): 15-31, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25424544

RESUMO

Trichloroethylene (TCE) is a widely used organic solvent. Although TCE is classified as carcinogenic to humans, substantial gaps remain in our understanding of interindividual variability in TCE metabolism and toxicity, especially in the liver. A hypothesis was tested that amounts of oxidative metabolites of TCE in mouse liver are associated with hepatic-specific toxicity. Oral dosing with TCE was conducted in subacute (600 mg/kg/d; 5 d; 7 inbred mouse strains) and subchronic (100 or 400 mg/kg/d; 1, 2, or 4 wk; 2 inbred mouse strains) designs. The quantitative relationship was evaluated between strain-, dose-, and time-dependent formation of TCE metabolites from cytochrome P-450-mediated oxidation (trichloroacetic acid [TCA], dichloroacetic acid [DCA], and trichloroethanol) and glutathione conjugation [S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)glutathione] in serum and liver, and various hepatic toxicity phenotypes. In subacute study, interstrain variability in TCE metabolite amounts was observed in serum and liver. No marked induction of Cyp2e1 protein levels in liver was detected. Serum and hepatic levels of TCA and DCA were correlated with increased transcription of peroxisome proliferator-marker genes Cyp4a10 and Acox1 but not with degree of induction in hepatocellular proliferation. In subchronic study, serum and liver levels of oxidative metabolites gradually decreased over time despite continuous dosing. Hepatic protein levels of CYP2E1, ADH, and ALDH2 were unaffected by treatment with TCE. While the magnitude of induction of peroxisome proliferator-marker genes also declined, hepatocellular proliferation increased. This study offers a unique opportunity to provide a scientific data-driven rationale for some of the major assumptions in human health assessment of TCE.


Assuntos
Fígado/efeitos dos fármacos , Tricloroetileno/farmacocinética , Tricloroetileno/toxicidade , Administração Oral , Animais , Carcinógenos/farmacocinética , Carcinógenos/toxicidade , Proliferação de Células , Cisteína/análogos & derivados , Cisteína/sangue , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Ácido Dicloroacético/sangue , Relação Dose-Resposta a Droga , Etilenocloroidrina/análogos & derivados , Etilenocloroidrina/metabolismo , Expressão Gênica , Glutationa/análogos & derivados , Glutationa/sangue , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Fígado/citologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Solventes/farmacocinética , Solventes/toxicidade , Ácido Tricloroacético/sangue
2.
J Toxicol Environ Health A ; 78(1): 32-49, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25424545

RESUMO

Trichloroethylene (TCE) is a well-known environmental and occupational toxicant that is classified as carcinogenic to humans based on the epidemiological evidence of an association with higher risk of renal-cell carcinoma. A number of scientific issues critical for assessing human health risks from TCE remain unresolved, such as the amount of kidney-toxic glutathione conjugation metabolites formed, interspecies and interindividual differences, and the mode of action for kidney carcinogenicity. It was postulated that TCE renal metabolite levels are associated with kidney-specific toxicity. Oral dosing with TCE was conducted in subacute (600 mg/kg/d; 5 d; 7 inbred mouse strains) and subchronic (100 or 400 mg/kg/d; 1, 2, or 4 wk; 2 inbred mouse strains) designs. The quantitative relationship was evaluated between strain-, dose, and time-dependent formation of TCE metabolites from cytochrome P-450-mediated oxidation (trichloroacetic acid [TCA], dichloroacetic acid [DCA], and trichloroethanol) and glutathione conjugation [S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)glutathione], and various kidney toxicity phenotypes. In subacute study, interstrain differences in renal TCE metabolite levels were observed. In addition, data showed that in several strains kidney-specific effects of TCE included induction of peroxisome proliferator-marker genes Cyp4a10 and Acox1, increased cell proliferation, and expression of KIM-1, a marker of tubular damage and regeneration. In subchronic study, peroxisome proliferator-marker gene induction and renal toxicity diminished while cell proliferative response was elevated in a dose-dependent manner in NZW/LacJ but not C57BL/6J mice. Overall, data demonstrated that renal TCE metabolite levels are associated with kidney-specific toxicity and that these effects are strain dependent.


Assuntos
Rim/efeitos dos fármacos , Tricloroetileno/farmacocinética , Tricloroetileno/toxicidade , Animais , Carcinógenos/farmacocinética , Carcinógenos/toxicidade , Proliferação de Células/efeitos dos fármacos , Cisteína/análogos & derivados , Cisteína/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Ácido Dicloroacético/metabolismo , Etilenocloroidrina/análogos & derivados , Etilenocloroidrina/metabolismo , Glutationa/análogos & derivados , Glutationa/metabolismo , Receptor Celular 1 do Vírus da Hepatite A , Rim/citologia , Rim/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Oxirredução/efeitos dos fármacos , PPAR alfa/genética , PPAR alfa/metabolismo , Ácido Tricloroacético/metabolismo
3.
Hepatology ; 56(1): 130-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22307928

RESUMO

UNLABELLED: Alcoholic liver injury is a major public health issue worldwide. Even though the major mechanisms of this disease have been established over the past decades, little is known about genetic susceptibility factors that may predispose individuals who abuse alcoholic beverages to liver damage and subsequent pathological conditions. We hypothesized that a panel of genetically diverse mouse strains may be used to examine the role of endoplasmic reticulum (ER) stress and one-carbon metabolism in the mechanism of interindividual variability in alcoholic liver injury. We administered alcohol (up to 27 mg/kg/d) in a high-fat diet using an intragastric intubation model for 28 days to male mice from 14 inbred strains (129S1/SvImJ, AKR/J, BALB/cJ, BALB/cByJ, BTBR T+tf/J, C3H/HeJ, C57BL/10J, DBA/2J, FVB/NJ, KK/HIJ, MOLF/EiJ, NZW/LacJ, PWD/PhJ, and WSB/EiJ). Profound interstrain differences (more than 3-fold) in alcohol-induced steatohepatitis were observed among the strains in spite of consistently high levels of urine alcohol that were monitored throughout the study. We found that ER stress genes were induced only in strains with the most liver injury. Liver glutathione and methyl donor levels were affected in all strains, albeit to a different degree. The most pronounced effects that were closely associated with the degree of liver injury were hyperhomocysteinemia and strain-dependent differences in expression patterns of one-carbon metabolism-related genes. CONCLUSION: Our data demonstrate that strain differences in alcohol-induced liver injury and steatosis are striking and independent of alcohol exposure and the most severely affected strains exhibit major differences in the expression of ER stress markers and genes of one-carbon metabolism.


Assuntos
Álcoois/administração & dosagem , Fígado Gorduroso Alcoólico/metabolismo , Fígado Gorduroso Alcoólico/patologia , Camundongos Endogâmicos/metabolismo , Álcoois/efeitos adversos , Animais , Biópsia por Agulha , Western Blotting , Modelos Animais de Doenças , Imuno-Histoquímica , Peroxidação de Lipídeos/fisiologia , Masculino , Metionina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Transferases de Grupo de Um Carbono/metabolismo , Estresse Oxidativo/fisiologia , Distribuição Aleatória , Índice de Gravidade de Doença , Especificidade da Espécie
4.
FASEB J ; 26(11): 4592-602, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22872676

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a major health problem and a leading cause of chronic liver disease in the United States and developed countries. In humans, genetic factors greatly influence individual susceptibility to NAFLD. The goals of this study were to compare the magnitude of interindividual differences in the severity of liver injury induced by methyl-donor deficiency among individual inbred strains of mice and to investigate the underlying mechanisms associated with the variability. Feeding mice a choline- and folate-deficient diet for 12 wk caused liver injury similar to NAFLD. The magnitude of liver injury varied among the strains, with the order of sensitivity being A/J ≈ C57BL/6J ≈ C3H/HeJ < 129S1/SvImJ ≈ CAST/EiJ < PWK/PhJ < WSB/EiJ. The interstrain variability in severity of NAFLD liver damage was associated with dysregulation of genes involved in lipid metabolism, primarily with a down-regulation of the peroxisome proliferator receptor α (PPARα)-regulated lipid catabolic pathway genes. Markers of oxidative stress and oxidative stress-induced DNA damage were also elevated in the livers but were not correlated with severity of liver damage. These findings suggest that the PPARα-regulated metabolism network is one of the key mechanisms determining interstrain susceptibility and severity of NAFLD in mice.


Assuntos
Deficiência de Colina/complicações , Colina/administração & dosagem , Fígado Gorduroso/etiologia , Deficiência de Ácido Fólico/complicações , Ácido Fólico/administração & dosagem , Metabolismo dos Lipídeos/genética , Ração Animal , Animais , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Dano ao DNA , Dieta , Fígado Gorduroso/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Variação Genética , Masculino , Camundongos , Camundongos Endogâmicos , Estresse Oxidativo , Análise Serial de Proteínas , Transcriptoma
5.
Toxicol Appl Pharmacol ; 232(2): 236-43, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18674555

RESUMO

Metabolomic evaluation of urine and liver was conducted to assess the biochemical changes that occur as a result of alcohol-induced liver injury. Male C57BL/6J mice were fed an isocaloric control- or alcohol-containing liquid diet with 35% of calories from corn oil, 18% protein and 47% carbohydrate/alcohol for up to 36 days ad libitum. Alcohol treatment was initiated at 7 g/kg/day and gradually reached a final dose of 21 g/kg/day. Urine samples were collected at 22, 30 and 36 days and, in additional treatment groups, liver and serum samples were harvested at 28 days. Steatohepatitis was induced in the alcohol-fed group since a 5-fold increase in serum alanine aminotransferase activity, a 6-fold increase in liver injury score (necrosis, inflammation and steatosis) and an increase in lipid peroxidation in liver were observed. Liver and urine samples were analyzed by nuclear magnetic resonance spectroscopy and electrospray infusion/Fourier transform ion cyclotron resonance-mass spectrometry. In livers of alcohol-treated mice the following changes were noted. Hypoxia and glycolysis were activated as evidenced by elevated levels of alanine and lactate. Tyrosine, which is required for l-DOPA and dopamine as well as thyroid hormones, was elevated possibly reflecting alterations of basal metabolism by alcohol. A 4-fold increase in the prostacyclin inhibitor 7,10,13,16-docosatetraenoic acid, a molecule important for regulation of platelet formation and blood clotting, may explain why chronic drinking causes serious bleeding problems. Metabolomic analysis of the urine revealed that alcohol treatment leads to decreased excretion of taurine, a metabolite of glutathione, and an increase in lactate, n-acetylglutamine and n-acetylglycine. Changes in the latter two metabolites suggest an inhibition of the kidney enzyme aminoacylase I and may be useful as markers for alcohol consumption.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Modelos Animais de Doenças , Etanol/toxicidade , Hepatopatias Alcoólicas/metabolismo , Consumo de Bebidas Alcoólicas/patologia , Consumo de Bebidas Alcoólicas/urina , Animais , Biomarcadores/metabolismo , Biomarcadores/urina , Etanol/administração & dosagem , Hepatopatias Alcoólicas/patologia , Hepatopatias Alcoólicas/urina , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
Toxicol Sci ; 132(1): 53-63, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23288052

RESUMO

Hepatocellular carcinoma (HCC) mostly develops in patients with advanced fibrosis; however, the mechanisms of interaction between a genotoxic insult and fibrogenesis are not well understood. This study tested a hypothesis that fibrosis promotes HCC via a mechanism that involves activation of liver stem cells. First, B6C3F1 mice were administered diethylnitrosamine (DEN; single ip injection of 1mg/kg at 14 days of age). Second, carbon tetrachloride (CCl(4); 0.2ml/kg, 2/week ip starting at 8 weeks of age) was administered for 9 or 14 weeks to develop advanced liver fibrosis. In animals treated with DEN as neonates, presence of liver fibrosis led to more than doubling (to 100%) of the liver tumor incidence as early as 5 months of age. This effect was associated with activation of cells with progenitor features in noncancerous liver tissue, including markers of replicative senescence (p16), oncofetal transformation (Afp, H19, and Bex1), and increased "stemness" (Prom1 and Epcam). In contrast, the dose of DEN used did not modify the extent of liver inflammation, fibrogenesis, oxidative stress, proliferation, or apoptosis induced by subchronic CCl(4) administration. This study demonstrates the potential role of liver stem-like cells in the mechanisms of chemical-induced, fibrosis-promoted HCC. We posit that the combination of genotoxic and fibrogenic insults is a sensible approach to model liver carcinogenesis in experimental animals. These results may contribute to identification of cirrhotic patients predisposed to HCC by analyzing the expression of hepatic progenitor cell markers in the noncancerous liver tissue.


Assuntos
Tetracloreto de Carbono/toxicidade , Dietilnitrosamina/toxicidade , Cirrose Hepática/complicações , Neoplasias Hepáticas Experimentais/etiologia , Animais , Animais Recém-Nascidos , Transformação Celular Neoplásica , Feminino , Imuno-Histoquímica , Cirrose Hepática/induzido quimicamente , Camundongos , Gravidez , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA