Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 38(3): 1231-1242, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35025514

RESUMO

Halloysite-based tubular nanorockets with chemical-/light-controlled self-propulsion and on-demand acceleration in velocity are reported. The nanorockets are fabricated by modifying halloysite nanotubes with nanoparticles of silver (Ag) and light-responsive α-Fe2O3 to prepare a composite of Ag-Fe2O3/HNTs. Compared to the traditional fabrication of tubular micro-/nanomotors, this strategy has merits in employing natural clay as substrates of an asymmetric tubular structure, of abundance, and of no complex instruments required. The velocity of self-propelled Ag-Fe2O3/HNTs nanorockets in fuel (3.0% H2O2) was ca. 1.7 times higher under the irradiation of visible light than that in darkness. Such light-enhanced propulsion can be wirelessly modulated by adjusting light intensity and H2O2 concentration. The highly repeatable and controlled "weak/strong" propulsion can be implemented by turning a light on and off. With the synergistic coupling of the photocatalysis of the Ag-Fe2O3 heterostructure and advanced oxidation in H2O2/visible light conditions, the Ag-Fe2O3/HNTs nanorockets achieve an enhanced performance of wastewater remediation. A test was done by the catalytic degradation of tetracycline hydrochloride. The light-enhanced propulsion is demonstrated to accelerate the degradation kinetics dramatically. All of these results illustrated that such motors can achieve efficient water remediation and open a new path for the photodegradation of organic pollutions.

2.
ACS Appl Mater Interfaces ; 13(41): 49017-49026, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34614350

RESUMO

Taking inspirations from nature, we endeavor to develop catalytically self-propelled nanojets from a type of tubular clay minerals, halloysite nanotubes (HNTs), and utilize them as catalysts targeted for catalysis where the traditional means of mechanical agitation cannot be implemented. Nanojets of Fe3O4@HNTs/Pt were prepared by impregnating platinum nanoparticles (Pt NPs) in lumens of HNTs and selective grafting of magnetite (Fe3O4) particles on the external surface. The HNT-based nanojets were validated to be highly suitable both in free bulk solution and in microfluidic flow. An example of Fenton degradation catalyzed by these jets was demonstrated. The powerful movement of Fe3O4@HNTs/Pt (368 ± 50 µm·s-1) fueled by 5.0% wt. H2O2 was found to follow a bubble propulsion mechanism, and the motion exhibits collective behavior as swarms. The clay tubes were for the first time observed to self-assemble into fish-like aggregates during swimming, reflecting natural occurrence of motion-evolution philosophy. Guided motion was realized by employing magnetic manipulation which makes jets feasible for reactors with complex microchannels/reactors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA