Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Appl Clin Med Phys ; 16(1): 5168, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25679174

RESUMO

The purpose of this study was to evaluate the radiation attenuation properties of PC-ISO, a commercially available, biocompatible, sterilizable 3D printing material, and its suitability for customized, single-use gynecologic (GYN) brachytherapy applicators that have the potential for accurate guiding of seeds through linear and curved internal channels. A custom radiochromic film dosimetry apparatus was 3D-printed in PC-ISO with a single catheter channel and a slit to hold a film segment. The apparatus was designed specifically to test geometry pertinent for use of this material in a clinical setting. A brachytherapy dose plan was computed to deliver a cylindrical dose distribution to the film. The dose plan used an 192Ir source and was normalized to 1500 cGy at 1 cm from the channel. The material was evaluated by comparing the film exposure to an identical test done in water. The Hounsfield unit (HU) distributions were computed from a CT scan of the apparatus and compared to the HU distribution of water and the HU distribution of a commercial GYN cylinder applicator. The dose depth curve of PC-ISO as measured by the radiochromic film was within 1% of water between 1 cm and 6 cm from the channel. The mean HU was -10 for PC-ISO and -1 for water. As expected, the honeycombed structure of the PC-ISO 3D printing process created a moderate spread of HU values, but the mean was comparable to water. PC-ISO is sufficiently water-equivalent to be compatible with our HDR brachytherapy planning system and clinical workflow and, therefore, it is suitable for creating custom GYN brachytherapy applicators. Our current clinical practice includes the use of custom GYN applicators made of commercially available PC-ISO when doing so can improve the patient's treatment. 


Assuntos
Braquiterapia/instrumentação , Braquiterapia/métodos , Dosimetria Fotográfica , Neoplasias dos Genitais Femininos/radioterapia , Radioisótopos de Irídio/uso terapêutico , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Simulação por Computador , Feminino , Humanos , Método de Monte Carlo , Dosagem Radioterapêutica , Tomografia Computadorizada por Raios X
2.
Med Phys ; 39(7): 4339-46, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22830767

RESUMO

PURPOSE: In this study, the authors introduce skew line needle configurations for high dose rate (HDR) brachytherapy and needle planning by integer program (NPIP), a computational method for generating these configurations. NPIP generates needle configurations that are specific to the anatomy of the patient, avoid critical structures near the penile bulb and other healthy structures, and avoid needle collisions inside the body. METHODS: NPIP consisted of three major components: a method for generating a set of candidate needles, a needle selection component that chose a candidate needle subset to be inserted, and a dose planner for verifying that the final needle configuration could meet dose objectives. NPIP was used to compute needle configurations for prostate cancer data sets from patients previously treated at our clinic. NPIP took two user-parameters: a number of candidate needles, and needle coverage radius, δ. The candidate needle set consisted of 5000 needles, and a range of δ values was used to compute different needle configurations for each patient. Dose plans were computed for each needle configuration. The number of needles generated and dosimetry were analyzed and compared to the physician implant. RESULTS: NPIP computed at least one needle configuration for every patient that met dose objectives, avoided healthy structures and needle collisions, and used as many or fewer needles than standard practice. These needle configurations corresponded to a narrow range of δ values, which could be used as default values if this system is used in practice. The average end-to-end runtime for this implementation of NPIP was 286 s, but there was a wide variation from case to case. CONCLUSIONS: The authors have shown that NPIP can automatically generate skew line needle configurations with the aforementioned properties, and that given the correct input parameters, NPIP can generate needle configurations which meet dose objectives and use as many or fewer needles than the current HDR brachytherapy workflow. Combined with robot assisted brachytherapy, this system has the potential to reduce side effects associated with treatment. A physical trial should be done to test the implant feasibility of NPIP needle configurations.


Assuntos
Braquiterapia/instrumentação , Agulhas , Neoplasias da Próstata/fisiopatologia , Neoplasias da Próstata/radioterapia , Implantação de Prótese/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Assistida por Computador/métodos , Braquiterapia/métodos , Simulação por Computador , Humanos , Masculino , Modelos Biológicos , Neoplasias da Próstata/cirurgia , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
Med Phys ; 38(7): 4045-51, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21859003

RESUMO

PURPOSE: Many planning methods for high dose rate (HDR) brachytherapy require an iterative approach. A set of computational parameters are hypothesized that will give a dose plan that meets dosimetric criteria. A dose plan is computed using these parameters, and if any dosimetric criteria are not met, the process is iterated until a suitable dose plan is found. In this way, the dose distribution is controlled by abstract parameters. The purpose of this study is to develop a new approach for HDR brachytherapy by directly optimizing the dose distribution based on dosimetric criteria. METHODS: The authors developed inverse planning by integer program (IPIP), an optimization model for computing HDR brachytherapy dose plans and a fast heuristic for it. They used their heuristic to compute dose plans for 20 anonymized prostate cancer image data sets from patients previously treated at their clinic database. Dosimetry was evaluated and compared to dosimetric criteria. RESULTS: Dose plans computed from IPIP satisfied all given dosimetric criteria for the target and healthy tissue after a single iteration. The average target coverage was 95%. The average computation time for IPIP was 30.1 s on an Intel(R) Core 2 Duo CPU 1.67 GHz processor with 3 Gib RAM. CONCLUSIONS: IPIP is an HDR brachytherapy planning system that directly incorporates dosimetric criteria. The authors have demonstrated that IPIP has clinically acceptable performance for the prostate cases and dosimetric criteria used in this study, in both dosimetry and runtime. Further study is required to determine if IPIP performs well for a more general group of patients and dosimetric criteria, including other cancer sites such as GYN.


Assuntos
Braquiterapia/métodos , Modelos Biológicos , Neoplasias da Próstata/radioterapia , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Simulação por Computador , Humanos , Masculino , Modelos Estatísticos , Dosagem Radioterapêutica
4.
Brachytherapy ; 15(2): 246-51, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26727333

RESUMO

PURPOSE: To present the algorithm of a modification to the inverse planning simulated annealing (IPSA) optimization engine that allows for restriction of the intracatheter dwell time variance. METHODS AND MATERIALS: IPSA was modified to allow user control of dwell time variance within each catheter through a single parameter, the dwell time deviation constraint (DTDC). The minimum DTDC value (DTDC = 0) does not impose any restriction on dwell time variance, and the maximum value (DTDC = 1) restricts all dwell times within each catheter to take on the same value. The final optimization penalty function value was evaluated as a function of DTDC. RESULTS: The algorithm proposed fully preserves the inverse planning nature of the IPSA algorithm along with the penalty-based dose optimization workflow. Increasing DTDC creates less variance in dwell time between dwell positions in each catheter and may be used to induce a more smooth change in dwell time with dwell position in each catheter. Nonzero DTDC values always increased the optimization penalty function value. CONCLUSIONS: The DTDC was developed as an extension to IPSA to allow restriction of the difference in dwell time between adjacent dwell positions. This results in less variation between neighboring dwell positions which can be clinically desirable. However, the impact of this restriction needs to be considered for its clinical relevance on a case-by-case basis because considerable degradation in dose-volume histogram metrics can result for large DTDC values.


Assuntos
Algoritmos , Braquiterapia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Catéteres , Humanos , Dosagem Radioterapêutica , Fatores de Tempo
5.
J Contemp Brachytherapy ; 8(3): 208-14, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27504130

RESUMO

PURPOSE: Three-dimensional (3D) printing technology allows physicians to rapidly create customized devices for patients. We report our initial clinical experience using this technology to create custom applicators for vaginal brachytherapy. MATERIAL AND METHODS: Three brachytherapy patients with unique clinical needs were identified as likely to benefit from a customized vaginal applicator. Patient 1 underwent intracavitary vaginal cuff brachytherapy after hysterectomy and chemotherapy for stage IA papillary serous endometrial cancer using a custom printed 2.75 cm diameter segmented vaginal cylinder with a central channel. Patient 2 underwent interstitial brachytherapy for a vaginal cuff recurrence of endometrial cancer after prior hysterectomy, whole pelvis radiotherapy, and brachytherapy boost. We printed a 2 cm diameter vaginal cylinder with one central and six peripheral catheter channels to fit a narrow vaginal canal. Patient 3 underwent interstitial brachytherapy boost for stage IIIA vulvar cancer with vaginal extension. For more secure applicator fit within a wide vaginal canal, we printed a 3.5 cm diameter solid cylinder with one central tandem channel and ten peripheral catheter channels. The applicators were printed in a biocompatible, sterilizable thermoplastic. RESULTS: Patient 1 received 31.5 Gy to the surface in three fractions over two weeks. Patient 2 received 36 Gy to the CTV in six fractions over two implants one week apart, with interstitial hyperthermia once per implant. Patient 3 received 18 Gy in three fractions over one implant after 45 Gy external beam radiotherapy. Brachytherapy was tolerated well with no grade 3 or higher toxicity and no local recurrences. CONCLUSIONS: We established a workflow to rapidly manufacture and implement customized vaginal applicators that can be sterilized and are made of biocompatible material, resulting in high-quality brachytherapy for patients whose anatomy is not ideally suited for standard, commercially available applicators.

6.
Brachytherapy ; 13(4): 413-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24529964

RESUMO

PURPOSE: During gynecologic brachytherapy (BT), suturing and image-guided needle insertions are highly skill-dependent tasks. Medical residents often have to practice these techniques in the operating room; this is sub-optimal for many reasons. We present a fast and low-cost method of building realistic and disposable gynecologic phantoms, which can be used to train physicians new to gynecologic BT. METHODS: Phantoms comprised a rectal cavity large enough to accommodate a standard transrectal ultrasound (US) probe, a vaginal cavity, a uterus, a uterine canal, and a cervix, all embedded in a gelatin matrix. The uterus was made of gelatin and coated with rubber to mimic the texture of soft tissue and for computed tomography (CT) and US image contrast. The phantom's durability, longevity, construction times, materials costs, CT, and US image quality were recorded. The speed of sound in the gelatin was measured using pulse echo measurements. RESULTS: Anatomic structures were distinguishable using CT and US. For the first phantom, material costs were under $200, curing time was approximately 48 hours, and active participation time was 3 hours. Reusable parts allowed for reduction in time and cost for subsequent phantoms: under $20, 24 hours curing time, and 1 hour active participation time. The speed of sound in the gelatin ranged from 1495 to 1506 m/s. CONCLUSION: A method for constructing gelatin gynecologic phantoms was developed. It can be used for training in image-guided BT needle insertion, placing a suture on the vaginal wall, and suturing the cervical lip.


Assuntos
Braquiterapia/métodos , Ginecologia/educação , Modelos Anatômicos , Imagens de Fantasmas , Técnicas de Sutura/educação , Braquiterapia/instrumentação , California , Competência Clínica , Desenho de Equipamento , Feminino , Gelatina , Humanos , Agulhas , Imagens de Fantasmas/economia , Técnicas de Sutura/instrumentação , Tomografia Computadorizada por Raios X , Útero , Vagina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA