Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Molecules ; 28(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36838579

RESUMO

The African nutmeg (Monodora myristica) is a medically useful plant. We, herein, aimed to critically examine whether bioactive compounds identified in the extracted oil of Monodora myristica could act as antimicrobial agents. To this end, we employed the Schrödinger platform as the computational tool to screen bioactive compounds identified in the oil of Monodora myristica. Our lead compound displayed the highest potency when compared with levofloxacin based on its binding affinity. The hit molecule was further subjected to an Absorption, Distribution, Metabolism, Excretion (ADME) prediction, and a Molecular Dynamics (MD) simulation was carried out on molecules with PubChem IDs 529885 and 175002 and on three standards (levofloxacin, cephalexin, and novobiocin). The MD analysis results demonstrated that two molecules are highly compact when compared to the native protein; thereby, this suggests that they could affect the protein on a structural and a functional level. The employed computational approach demonstrates that conformational changes occur in DNA gyrase after the binding of inhibitors; thereby, this resulted in structural and functional changes. These findings expand our knowledge on the inhibition of bacterial DNA gyrase and could pave the way for the discovery of new drugs for the treatment of multi-resistant bacterial infections.


Assuntos
Annonaceae , Anti-Infecciosos , Inibidores da Topoisomerase II , Annonaceae/química , Anti-Infecciosos/farmacologia , DNA Girase , Levofloxacino , Inibidores da Topoisomerase II/farmacologia
2.
Nanotechnology ; 33(10)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34814123

RESUMO

Advancements in nanotechnology have provided insight into the unique opportunities for the application of nanomaterials such as gold nanoparticles (AuNPs) in medicine due to their remarkable properties, which includes low toxicity, large surface area, and the ease of synthesis and conjugation to other molecules. Therefore, AuNPs are often preferred for bio-applications. Citrate-capped AuNPs (cAuNPs) have been reported to be non-cytotoxic and are used in numerous studies as drug delivery vehicles to treat various diseases. However, the limitations of bioassays often used to assess the toxicity of AuNPs have been well documented. Herein, we investigate the cytotoxicity of 14 nm cAuNPs in the human colorectal adenocarcinoma (Caco-2) cell line. Treatment conditions (i.e. dose and exposure time) that were established to be non-toxic to Caco-2 cells were used to investigate the effect of cAuNPs on the expression of a Qiagen panel of 86 genes involved in cytotoxicity. Out of 86 studied, 23 genes were differentially expressed. Genes involved in oxidative stress and antioxidant response, endoplasmic reticulum (ER) stress and unfolded protein response, heat shock response, and lipid metabolism were more affected than others. While low concentrations of 14 nm cAuNPs was not cytotoxic and did not cause cell death, cells treated with these nanoparticles experienced ER and oxidative stress, resulting in the activation of cytoprotective cellular processes. Additionally, several genes involved in lipid metabolism were also affected. Therefore, 14 nm cAuNPs can safely be used as drug delivery vehicles at low doses.


Assuntos
Ácido Cítrico , Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos , Nanopartículas Metálicas , Estresse Oxidativo , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Ácido Cítrico/química , Ácido Cítrico/farmacologia , Ácido Cítrico/toxicidade , Ouro/química , Ouro/farmacologia , Ouro/toxicidade , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Nanomedicina , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Tamanho da Partícula
3.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502340

RESUMO

The SARS-CoV-2 main protease (Mpro) is one of the molecular targets for drug design. Effective vaccines have been identified as a long-term solution but the rate at which they are being administered is slow in several countries, and mutations of SARS-CoV-2 could render them less effective. Moreover, remdesivir seems to work only with some types of COVID-19 patients. Hence, the continuous investigation of new treatments for this disease is pivotal. This study investigated the inhibitory role of natural products against SARS-CoV-2 Mpro as repurposable agents in the treatment of coronavirus disease 2019 (COVID-19). Through in silico approach, selected flavonoids were docked into the active site of Mpro. The free energies of the ligands complexed with Mpro were computationally estimated using the molecular mechanics-generalized Born surface area (MM/GBSA) method. In addition, the inhibition process of SARS-CoV-2 Mpro with these ligands was simulated at 100 ns in order to uncover the dynamic behavior and complex stability. The docking results showed that the selected flavonoids exhibited good poses in the binding domain of Mpro. The amino acid residues involved in the binding of the selected ligands correlated well with the residues involved with the mechanism-based inhibitor (N3) and the docking score of Quercetin-3-O-Neohesperidoside (-16.8 Kcal/mol) ranked efficiently with this inhibitor (-16.5 Kcal/mol). In addition, single-structure MM/GBSA rescoring method showed that Quercetin-3-O-Neohesperidoside (-87.60 Kcal/mol) is more energetically favored than N3 (-80.88 Kcal/mol) and other ligands (Myricetin 3-Rutinoside (-87.50 Kcal/mol), Quercetin 3-Rhamnoside (-80.17 Kcal/mol), Rutin (-58.98 Kcal/mol), and Myricitrin (-49.22 Kcal/mol). The molecular dynamics simulation (MDs) pinpointed the stability of these complexes over the course of 100 ns with reduced RMSD and RMSF. Based on the docking results and energy calculation, together with the RMSD of 1.98 ± 0.19 Å and RMSF of 1.00 ± 0.51 Å, Quercetin-3-O-Neohesperidoside is a better inhibitor of Mpro compared to N3 and other selected ligands and can be repurposed as a drug candidate for the treatment of COVID-19. In addition, this study demonstrated that in silico docking, free energy calculations, and MDs, respectively, are applicable to estimating the interaction, energetics, and dynamic behavior of molecular targets by natural products and can be used to direct the development of novel target function modulators.


Assuntos
Produtos Biológicos/metabolismo , SARS-CoV-2/enzimologia , Proteínas da Matriz Viral/metabolismo , Sítios de Ligação , Produtos Biológicos/química , Produtos Biológicos/uso terapêutico , COVID-19/patologia , COVID-19/virologia , Domínio Catalítico , Desenho de Fármacos , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Inibidores de Proteases/uso terapêutico , Quercetina/análogos & derivados , Quercetina/química , Quercetina/metabolismo , Quercetina/uso terapêutico , SARS-CoV-2/isolamento & purificação , Proteínas da Matriz Viral/química , Tratamento Farmacológico da COVID-19
4.
Molecules ; 25(23)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287388

RESUMO

Holamine and funtumine, steroidal alkaloids with strong and diverse pharmacological activities are commonly found in the Apocynaceae family of Holarrhena. The selective anti-proliferative and cell cycle arrest effects of holamine and funtumine on cancer cells have been previously reported. The present study evaluated the anti-proliferative mechanism of action of these two steroidal alkaloids on cancer cell lines (HT-29, MCF-7 and HeLa) by exploring the mitochondrial depolarization effects, reactive oxygen species (ROS) induction, apoptosis, F-actin perturbation, and inhibition of topoisomerase-I. The apoptosis-inducing effects of the compounds were studied by flow cytometry using the APOPercentageTM dye and Caspase-3/7 Glo assay kit. The two compounds showed a significantly greater cytotoxicity in cancer cells compared to non-cancer (normal) fibroblasts. The observed antiproliferative effects of the two alkaloids presumably are facilitated through the stimulation of apoptosis. The apoptotic effect was elicited through the modulation of mitochondrial function, elevated ROS production, and caspase-3/7 activation. Both compounds also induced F-actin disorganization and inhibited topoisomerase-I activity. Although holamine and funtumine appear to have translational potential for the development of novel anticancer agents, further mechanistic and molecular studies are recommended to fully understand their anticancer effects.


Assuntos
Alcaloides/farmacologia , Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células HT29 , Células HeLa , Holarrhena/química , Humanos , Células MCF-7 , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
J Nanobiotechnology ; 17(1): 122, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31842876

RESUMO

Obesity through its association with type 2 diabetes (T2D), cancer and cardiovascular diseases (CVDs), poses a serious health threat, as these diseases contribute to high mortality rates. Pharmacotherapy alone or in combination with either lifestyle modification or surgery, is reliable in maintaining a healthy body weight, and preventing progression to obesity-induced diseases. However, the anti-obesity drugs are limited by non-specificity and unsustainable weight loss effects. As such, novel and improved approaches for treatment of obesity are urgently needed. Nanotechnology-based therapies are investigated as an alternative strategy that can treat obesity and be able to overcome the drawbacks associated with conventional therapies. The review presents three nanotechnology-based anti-obesity strategies that target the white adipose tissues (WATs) and its vasculature for the reversal of obesity. These include inhibition of angiogenesis in the WATs, transformation of WATs to brown adipose tissues (BATs), and photothermal lipolysis of WATs. Compared to conventional therapy, the targeted-nanosystems have high tolerability, reduced side effects, and enhanced efficacy. These effects are reproducible using various nanocarriers (liposomes, polymeric and gold nanoparticles), thus providing a proof of concept that targeted nanotherapy can be a feasible strategy that can combat obesity and prevent its comorbidities.


Assuntos
Fármacos Antiobesidade/química , Portadores de Fármacos/química , Nanopartículas/química , Obesidade/tratamento farmacológico , Indutores da Angiogênese/metabolismo , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Animais , Fármacos Antiobesidade/farmacologia , Liberação Controlada de Fármacos , Ouro/química , Humanos , Lipídeos/química , Polímeros/química , Nanomedicina Teranóstica , Resultado do Tratamento
6.
J Biomol Struct Dyn ; : 1-14, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38525928

RESUMO

The presence of HLA-DRB1 alleles that encode critical points associated with environmental interactions is associated with increased risk of rheumatoid arthritis caused by anti-citrullinated protein antibodies. Therefore, interleukin-6 (IL-6), a multifunctional cytokine that controls both local and systemic acute inflammatory responses through its ability to induce a phase response, plays a serious role. Its overexpression leads to pathological challenges such as rheumatoid arthritis and menopausal osteoporosis. However, targeting the IL-6 receptor and its region could be the major step in controlling the overexpression of this cytokine for therapeutic importance. Therefore, our research explored the computational insight needed to investigate the anti-RFA potential of phytochemicals from fractionated extracts of Morus alba L. against receptors, which have been implicated as druggable targets for the treatment of rheumatoid arthritis. In this study, fifty-nine (59) previously isolated and characterized phytochemicals from M. alba L. were identified from the literature and retrieved from the PubChem database. In silico screening was used to assess the mode of action of these phytochemicals from M. alba L. against receptors that may serve as therapeutic targets for rheumatoid arthritis. Molecular docking studies, toxicity prediction, drug visualization and molecular dynamics simulation (MD) of the ligands together with the receptor-identified target were carried out using the Schrodinger Molecular Drug Discovery Suite. The findings indicated that a selected group of ligands displayed significant binding strength to specific amino acid residues, revealing an important link between the building blocks of proteins (amino acids) and ligands at the inhibitor binding site through traditional chemical interactions, such as interactions between hydrophobic and hydrogen bonds. The binding affinities of the receptors were carefully checked via comparison with those of the approved ligands, and the results suggested structural and functional changes in the lead compounds. Therefore, the bioactive component from M. alba L. could be a lead foot interleukin-6 (IL-6) inhibitor and could be a promising lead compound for the treatment of rheumatoid arthritis and related challenges.Communicated by Ramaswamy H. Sarma.


Identified phytocompounds from the fractionated extract of Morus alba inhibit IL-6 production via molecular docking and molecular simulation analysisChanges in the structure and function of these hit compounds show promising potential in the treatment of rheumatoid arthritis and related challenges.

7.
Biosensors (Basel) ; 13(3)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36979566

RESUMO

The current study reports on the development of a rapid and cost-effective TB-antigen diagnostic test for the detection of Mycobacterium biomarkers from non-sputum-based samples. Two gold nanoparticle (AuNP)-based rapid diagnostic tests (RDTs) in the form of lateral flow immunoassays (LFIAs) were developed for detection of immunodominant TB antigens, the 6 kDa early secreted antigen target EsxA (ESAT-6) and the 10 kDa culture filtrate protein EsxB (CFP-10). AuNPs were synthesized using the Turkevich method and characterized by UV-vis spectrophotometer and transmission electron microscope (TEM). The AuNP-detection probe conjugation conditions were determined by comparing the stability of 14 nm AuNPs at different pH conditions, following salt challenge. Thereafter, ESAT-6 and CFP-10 antibodies were conjugated to the AuNPs and used for the colorimetric detection of TB antigens. Selection of the best detection and capture antibody pairs was determined by Dot spotting. The limits of detection (LODs) for the LFIAs were evaluated by dry testing. TEM results showed that the 14 nm AuNPs were mostly spherical and well dispersed. The ESAT-6 LFIA prototype had an LOD of 0.0625 ng/mL versus the CFP-10 with an LOD of 7.69 ng/mL. Compared to other studies in the literature, the LOD was either similar or lower, outperforming them. Moreover, in some of the previous studies, an enrichment/extraction step was required to improve on the LOD. In this study, the LFIAs produced results within 15 min and could be suitable for use at PoCs either in clinics, mobile clinics, hospitals or at home by the end user. However, further studies need to be conducted to validate their use in clinical samples.


Assuntos
Nanopartículas Metálicas , Mycobacterium tuberculosis , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Ouro , Imunoensaio , Anticorpos/metabolismo
8.
Pharmaceutics ; 15(3)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36986733

RESUMO

There is growing interest in the use of green synthesized silver nanoparticles (AgNPs) to control and prevent dental diseases. The incorporation of green synthesized AgNPs into dentifrices to reduce pathogenic oral microbes is motivated by their presumed biocompatibility and broad-spectrum antimicrobial activity. In the present study, gum arabic AgNPs (GA-AgNPs) were formulated into a toothpaste (TP) using a commercial TP at a non-active concentration, to produce GA-AgNPs_TP. The TP was selected after evaluating the antimicrobial activity of four commercial TPs 1-4 on selected oral microbes using agar disc diffusion and microdilution assays. The less active TP-1 was then used in the formulation of GA-AgNPs_TP-1; thereafter, the antimicrobial activity of GA-AgNPs_0.4g was compared to GA-AgNPs_TP-1. The cytotoxicity of GA-AgNPs_0.4g and GA-AgNPs_TP-1 was also assessed on the buccal mucosa fibroblast (BMF) cells using the MTT assay. The study demonstrated that antimicrobial activity of GA-AgNPs_0.4g was retained after being combined with a sub-lethal or inactive concentration of TP-1. The non-selective antimicrobial activity and cytotoxicity of both GA-AgNPs_0.4g and GA-AgNPs_TP-1 was demonstrated to be time and concentration dependent. These activities were instant, reducing microbial and BMF cell growth in less than one hour of exposure. However, the use of dentifrice commonly takes 2 min and rinsed off thereafter, which could prevent damage to the oral mucosa. Although, GA-AgNPs_TP-1 has a good prospect as a TP or oral healthcare product, more studies are required to further improve the biocompatibility of this formulation.

9.
Nat Prod Res ; : 1-8, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904509

RESUMO

The aim of this study was to examine the effects of triterpenes from Pleiocarpa pycnantha leaves on the induction of apoptotic signalling in human cells. The molecular mechanisms of triterpenes isolated from P. pycnantha leaves were investigated in vitro on HeLa, MCF-7, HT-29, and KMST-6 cells. The compounds activated several markers associated with apoptosis, viz., phosphatidylserine translocation, caspase activation, oxidative stress, and topoisomerase I inhibition. Compounds 1 and 5 were non-selective, whereas compounds 2, 3, and 4 showed potential as cancer-specific agents by selectively inducing apoptosis only on cancer cells. Theoretical studies on the interactions of compound 1 with caspases -3 and -9 and topoisomerase I were carried out through a molecular docking study and illustrated that compound 1 had an equal binding affinity with the caspases and topoisomerase I comparable to that of camptothecin. The cellular pathway activated by these compounds was dependent on the compound and the cell type.

10.
J Pharm Anal ; 13(11): 1235-1251, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38174117

RESUMO

Colorectal cancer (CRC) is among the leading causes of cancer mortality. The lifetime risk of developing CRC is about 5% in adult males and females. CRC is usually diagnosed at an advanced stage, and at this point therapy has a limited impact on cure rates and long-term survival. Novel and/or improved CRC therapeutic options are needed. The involvement of microRNAs (miRNAs) in cancer development has been reported, and their regulation in many oncogenic pathways suggests their potent tumor suppressor action. Although miRNAs provide a promising therapeutic approach for cancer, challenges such as biodegradation, specificity, stability and toxicity, impede their progression into clinical trials. Nanotechnology strategies offer diverse advantages for the use of miRNAs for CRC-targeted delivery and therapy. The merits of using nanocarriers for targeted delivery of miRNA-formulations are presented herein to highlight the role they can play in miRNA-based CRC therapy by targeting different stages of the disease.

11.
J Biomol Struct Dyn ; 40(2): 875-885, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32924825

RESUMO

The health sector has been on the race to find a potent therapy for coronavirus disease (COVID)-19, a diseases caused by severe acute respiratory syndrome coronavirus (SARS-CoV)-2. Repurposed anti-viral drugs have played a huge role in combating the virus, and most recently, dexamethasone (Dex) have shown its therapeutic activity in severe cases of COVID-19 patients. The study sought to provide insights on the anti-COVID-19 mechanism of Dex at both atomic and molecular level against SARS-CoV-2 targets. Computational methods were employed to predict the binding affinity of Dex to SARS-CoV-2 using the Schrodinger suite (v2020-2). The target molecules and ligand (Dex) were retrieved from PDB and PubChem, respectively. The selected targets were SARS-CoV-2 main protease (Mpro), and host secreted molecules glucocorticoid receptor, and Interleukin-6 (IL-6). Critical analyses such as Protein and ligand preparation, molecular docking, molecular dynamic (MD) simulations, and absorption, distribution, metabolism, excretion (ADME), and toxicity analyses were performed using the targets and the ligand as inputs. Dex showed stronger affinity to its theoretical (glucocorticoid) receptor with a superior docking score of -14.7 and a good binding energy value of -147.48 kcal/mol; while short hydrogen bond distances were observed in both Mpro and IL-6 when compared to glucocorticoid receptor. Based on these findings, Dex-target complexes were used to perform MD simulations to analyze Dex stability at 50 ns. This study demonstrates that Dex could bind to both the viral and host receptors as a potential drug candidate for COVID-19. To ascertain the biological fitness of this study, other SARS-CoV-2 targets should be explored. Also, the in vitro studies of dexamethasone against several SARS-CoV-2 targets warrant further investigation.Communicated by Ramaswamy H. Sarma.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Dexametasona/farmacologia , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases
12.
Diagnostics (Basel) ; 12(8)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36010323

RESUMO

The current levels of breast cancer in African women have contributed to the high mortality rates among them. In South Africa, the incidence of breast cancer is also on the rise due to changes in behavioural and biological risk factors. Such low survival rates can be attributed to the late diagnosis of the disease due to a lack of access and the high costs of the current diagnostic tools. Breast cancer is asymptomatic at early stages, which is the best time to detect it and intervene to prevent high mortality rates. Proper risk assessment, campaigns, and access to adequate healthcare need to be prioritised among patients at an early stage. Early detection of breast cancer can significantly improve the survival rate of breast cancer patients, since therapeutic strategies are more effective at this stage. Early detection of breast cancer can be achieved by developing devices that are simple, sensitive, low-cost, and employed at point-of-care (POC), especially in low-income countries (LICs). Nucleic-acid-based lateral flow assays (NABLFAs) that combine molecular detection with the immunochemical visualisation principles, have recently emerged as tools for disease diagnosis, even for low biomarker concentrations. Detection of circulating genetic biomarkers in non-invasively collected biological fluids with NABLFAs presents an appealing and suitable method for POC testing in resource-limited regions and/or LICs. Diagnosis of breast cancer at an early stage will improve the survival rates of the patients. This review covers the analysis of the current state of NABLFA technologies used in developing countries to reduce the scourge of breast cancer.

13.
Pharmaceutics ; 14(2)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35214112

RESUMO

Oral diseases are the most common non-communicable diseases in the world, with dental caries and periodontitis causing major health and social problems. These diseases can progress to systematic diseases and cause disfigurement when left untreated. However, treatment of oral diseases is among the most expensive treatments and often focus on restoration of form and function. Caries prevention has traditionally relied on oral hygiene and diet control, among other preventive measures. In this paper, these measures are not disqualified but are brought into a new context through the use of nanotechnology-based materials to improve these conventional therapeutic and preventive measures. Among inorganic nanomaterials, silver nanoparticles (AgNPs) have shown promising outcomes in dental therapy, due to their unique physicochemical properties and enhanced anti-bacterial activities. As such, AgNPs may provide newer strategies for treatment and prevention of dental infections. However, numerous concerns around the chemical synthesis of nanomaterials, which are not limited to cost and use of toxic reducing agents, have been raised. This has inspired the green synthesis route, which uses natural products as reducing agents. The biogenic AgNPs were reported to be biocompatible and environmentally friendly when compared to the chemically-synthesized AgNPs. As such, plant-synthesized AgNPs can be used as antimicrobial, antifouling, and remineralizing agents for management and treatment of dental infections and diseases.

14.
J Biomol Struct Dyn ; 40(8): 3416-3427, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33200673

RESUMO

The exponential increase in cases and mortality of coronavirus disease (COVID-19) has called for a need to develop drugs to treat this infection. Using in silico and molecular docking approaches, this study investigated the inhibitory effects of Pradimicin A, Lamivudine, Plerixafor and Lopinavir against SARS-CoV-2 Mpro. ADME/Tox of the ligands, pharmacophore hypothesis of the co-crystalized ligand and the receptor, and docking studies were carried out on different modules of Schrodinger (2019-4) Maestro v12.2. Among the ligands subjected to ADME/Tox by QikProp, Lamivudine demonstrated drug-like physico-chemical properties. A total of five pharmacophore binding sites (A3, A4, R9, R10, and R11) were predicted from the co-crystalized ligand and the binding cavity of the SARS-CoV-2 Mpro. The docking result showed that Lopinavir and Lamivudine bind with a higher affinity and lower free energy than the standard ligand having a glide score of -9.2 kcal/mol and -5.3 kcal/mol, respectively. Plerixafor and Pradimicin A have a glide score of -3.7 kcal/mol and -2.4 kcal/mol, respectively, which is lower than the co-crystallized ligand with a glide score of -5.3 kcal/mol. Molecular dynamics confirmed that the ligands maintained their interaction with the protein with lower RMSD fluctuations over the trajectory period of 100 nsecs and that GLU166 residue is pivotal for binding. On the whole, present study specifies the repurposing aptitude of these molecules as inhibitors of SARS-CoV-2 Mpro with higher binding scores and forms energetically stable complexes with Mpro.Communicated by Ramaswamy H. Sarma.


Assuntos
Tratamento Farmacológico da COVID-19 , Compostos Heterocíclicos , Proteases 3C de Coronavírus , Mobilização de Células-Tronco Hematopoéticas , Humanos , Lamivudina , Ligantes , Lopinavir/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/farmacologia , SARS-CoV-2
15.
Biomedicines ; 10(11)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36359308

RESUMO

Silver nanoparticles (AgNPs) have attracted a lot of interest directed towards biomedical applications due in part to their outstanding anti-microbial activities. However, there have been many health-impacting concerns about their traditional synthesis methods, i.e., the chemical and physical methods. Chemical methods are commonly used and contribute to the overall toxicity of the AgNPs, while the main disadvantages of physical synthesis include high production costs and high energy consumption. The biological methods provide an economical and biocompatible option as they use microorganisms and natural products in the synthesis of AgNPs with exceptional biological properties. Plant extract-based synthesis has received a lot of attention and has been shown to resolve the limitations associated with chemical and physical methods. AgNPs synthesized using plant extracts provide a safe, cost-effective, and environment-friendly approach that produces biocompatible AgNPs with enhanced properties for use in a wide range of applications. The review focused on the use of plant-synthesized AgNPs in various biomedical applications as anti-microbial, anti-cancer, anti-inflammatory, and drug-delivery agents. The versatility and potential use of green AgNPs in the bio-medicinal sector provides an innovative alternative that can overcome the limitations of traditional systems. Thus proving green nanotechnology to be the future for medicine with continuous progress towards a healthier and safer environment by forming nanomaterials that are low- or non-toxic using a sustainable approach.

16.
J Biomol Struct Dyn ; 40(2): 848-859, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-32924840

RESUMO

The worldwide expanding increment in cancer pervasiveness is disturbing and this disease ranks among the main causes of mortality in both developing and developed countries. Unfortunately, available treatment options come with serious side effects and do not guarantee complete success. Although numerous models have been proposed for the development of better therapeutic agent, however the exact mechanism are still poorly understood. This then calls for continued research aimed at developing new drugs as an alternative or adjuvant anticancer agents. Here we have identified five vital proteins (CDK-2, Bcl-2, CDK-6, VEGFR, and IGF-1R) that aid tumor growth and we inhibited the activity of these proteins with Puerarin. Puerarin is an isoflavonoid C-glycosides used as a therapeutic agent against various human ailments. Our findings revealed that Puerarin fulfilled Veber's rule. Added to this, CDK-6 and Bcl-2 had better glide scores for puerarin than the control (doxorubicin) and molecular simulation showed the stability of the complexes. These findings suggest that inhibiting CDK-6 and Bcl-2 with Puerarin could prove more effective in the management of cancer than doxorubicin. Overall, this study provides a new direction that could facilitate rational drug design for cancer.Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos , Isoflavonas , Neoplasias , Antineoplásicos/farmacologia , Apoptose , Humanos , Isoflavonas/farmacologia , Neoplasias/tratamento farmacológico
17.
J Diet Suppl ; 18(2): 132-146, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32114858

RESUMO

The anti-cancer activities of many fermented foods and beverages are now scientifically established. Ogiri-egusi is a condiment prepared from fermentation of Citrullus vulgaris (melon) seeds and consumed in many countries of West Africa. Its anti-oxidative and anti-hyperlipidaemic properties have been reported. This study investigated the anti-cancer activities of the aqueous and methanolic extracts from ogiri-egusi. Cytotoxicity was investigated using the MTT and colony-formation inhibition assays while flow-cytometer based Apopercentage assay was used to quantify apoptosis in extracts-treated cervical and liver cancer and normal human fibroblast cells. The inhibitory concentration responsible for killing 50% of cells after 24 h by the aqueous extract in KMST-6, HeLa, and Hep-G2 cells were estimated at 1.610, 1.020, and 1.507 mg/mL respectively. While these values reduced with increasing incubation time in cancer cells it increased in the non-cancer cell. Furthermore, the extract significantly induced apoptosis in HeLa (97 ± 0.18%) and Hep-G2 (73 ± 6.73%) cells. These findings were corroborated by cells morphologic presentations and inhibition of colony formation assay. These findings suggest that the aqueous extract from fermented Citrullus vulgaris seeds might be a nutraceutical with potential anti-cancer properties.


Assuntos
Antineoplásicos Fitogênicos , Apoptose , Citrullus , Extratos Vegetais , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Citrullus/química , Fibroblastos/efeitos dos fármacos , Células HeLa , Células Hep G2 , Humanos , Extratos Vegetais/farmacologia , Sementes/química
18.
Pharmaceutics ; 13(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34834210

RESUMO

Antimicrobial resistance (AMR) is a significant threat to global health. The conventional antibiotic pool has been depleted, forcing the investigation of novel and alternative antimicrobial strategies. Antimicrobial peptides (AMPs) have shown potential as alternative diagnostic and therapeutic agents in biomedical applications. To date, over 3000 AMPs have been identified, but only a fraction of these have been approved for clinical trials. Their clinical applications are limited to topical application due to their systemic toxicity, susceptibility to protease degradation, short half-life, and rapid renal clearance. To circumvent these challenges and improve AMP's efficacy, different approaches such as peptide chemical modifications and the development of AMP delivery systems have been employed. Nanomaterials have been shown to improve the activity of antimicrobial drugs by providing support and synergistic effect against pathogenic microbes. This paper describes the role of nanotechnology in the targeted delivery of AMPs, and some of the nano-based delivery strategies for AMPs are discussed with a clear focus on metallic nanoparticle (MNP) formulations.

19.
Nanobiomedicine (Rij) ; 8: 1849543521995310, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33643450

RESUMO

Green nanotechnology has drawn major attention because of its ecofriendly and economical biosynthetic protocols. Synthesis of gold nanoparticles (AuNPs) using plant secondary metabolites is considered as a safer and cheaper option. Plants contain phytochemicals that has been used traditionally for treatment of various diseases, and proved to be non-toxic to healthy tissues. These phytochemicals play an important role in bio-reduction processes as reducing and stabilizing agents, and renders NPs selective toxicity towards diseased tissues. The study reports on the synthesis of AuNPs using Acai berry (AB) and Elderberry (EB) extracts and their anti-cancer properties. Formation of berry-AuNPs was confirmed through measurement of physico-chemical properties. The stability of the AuNPs was tested in biocompatible solutions. Anti-cancer activity of berry extracts and AuNPs was evaluated on the prostate (PC-3) and pancreatic (Panc-1) cancer cells. The berry extracts did not show toxicity to the cells, except for AB extracts on PC-3 cells at higher concentrations. The berry-AuNPs showed potential anti-cancer activities, and these effects could be further exploited for treatment of both the prostate and pancreatic cancers. Further studies are required to study the NP mechanism of action and specificity, as well as identify the phytochemicals involved in the synthesis of AuNPs.

20.
Artif Cells Nanomed Biotechnol ; 49(1): 614-625, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34590509

RESUMO

Green nanotechnology stands amongst the leading giants of innovation for the twenty first century technological advances. More interesting, is the use of natural products as reducing agents. These could be recyclable materials from fruits and vegetables to produce nanoparticles (NPs) with novel properties. In the current study, silver NPs (AgNPs) were synthesized using the water extracts from the peel and flesh of two Pyrus communis L. cultivars, namely, the Forelle (Red) Pears (RPE) and Packham Triumph (Green) Pears (GPE). The AgNPs were characterized by UV-Vis spectrophotometry, Dynamic Light Scattering (DLS), High Resolution Transmission Electron Microscopy (HRTEM) and Fourier Transform Infra-Red Spectroscopy (FTIR). The antibacterial activities of the AgNPs were evaluated using agar well diffusion and microdilution assays. The cytotoxicity of the AgNPs was investigated on a rat macrophage (RAW 264.7) cells using MTT assay. Both the RPE and GPE were capable of synthesizing the AgNPs at high temperatures (70 and 100 °C). The AgNPs exhibited antibacterial activity against the test strains, and also had low toxicity towards the RAW 264.7 cells. Thus, the synthesized AgNPs have a potentially viable use in bio-applications for treatment of bacterial infections.


Assuntos
Prata
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA