Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Parasitol Res ; 123(2): 127, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38332358

RESUMO

The Almaco jack (Seriola rivoliana) is a marine fish maintained in mariculture systems and frequently infested by monogenean parasites like Neobenedenia sp. Severe infestations can lead to high mortalities and economic losses for farmers. This study evaluated the effects of temperature on the immune response on Almaco jack infested with Neobenedenia sp. We exposed infested fishes at temperatures of 20 °C, 24 °C, and 30 °C for 20 days and took samples of different tissues at the beginning of the experiment, and after 3 and 20 days. The tissues considered were the skin, thymus, cephalic kidney, and spleen to evaluate the relative gene expression of different genes: Hsp70, IgM, IL-1ß, IL-10, and MyD88. Our results showed an increase in IL-1ß gene expression in the skin after 20 days of infestation but no significant effect of temperature on gene expression, despite increases in infestation rates with temperature. Therefore, relative genetic expression was controlled by the number of parasites and the days post-infestation. These results show that the parasite infestation induced a local response in the skin, but that temperature has an indirect effect on the immune system of Almaco jack.


Assuntos
Perciformes , Trematódeos , Animais , Temperatura , Trematódeos/genética , Perciformes/parasitologia , Peixes , Imunidade
2.
Parasitol Res ; 118(12): 3267-3277, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31673832

RESUMO

Seriola rivoliana cultivated in Mexico are infected by Neobenedenia sp. (Monogenea: Capsalidae), resulting in dermal ulceration and subsequent bacterial invasion that can cause fish death. This study assesses the effects of temperature over hatching success, oncomiracidia longevity, and infection success. The experimental design consisted of culturing the parasite at temperatures ranging between 16 and 32 °C. The oncomiracidia infection success, time to sexual maturity, and size at sexual maturity of Neobenedenia sp. were examined only at three temperatures (20 °C, 24 °C, and 30 °C). Experiments were conducted under controlled conditions in the laboratory. The oncomiracidia development was found to be faster at warmer temperatures (4-5 days between 24 and 30 °C) than in colder treatments (7-11 days between 18 and 20 °C). Hatching success and oncomiracidia longevity were higher at 24 °C and 26 °C. At 20 °C, 24 °C, and 30 °C, infection success was greater than 90%. Additionally, the laid eggs were observed at 9, 12, and 15 days at 30 °C, 24 °C, and 30 °C, respectively. The results of this study will allow for improving the temporal schedule of applications of treatments against Neobenedenia sp. by the function of temperatures. In conclusion, it is recommended to treat fish more frequently if the temperature in cultures is higher than 24 °C, because Neobenedenia sp. development is faster. As an alternative, the fish could be moved to deeper and cooler waters.


Assuntos
Estágios do Ciclo de Vida , Perciformes/parasitologia , Temperatura , Trematódeos/crescimento & desenvolvimento , Animais , Doenças dos Peixes/parasitologia , México
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA