Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 84(7): 1224-1242.e13, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38458201

RESUMO

Although mismatch repair (MMR) is essential for correcting DNA replication errors, it can also recognize other lesions, such as oxidized bases. In G0 and G1, MMR is kept in check through unknown mechanisms as it is error-prone during these cell cycle phases. We show that in mammalian cells, D-type cyclins are recruited to sites of oxidative DNA damage in a PCNA- and p21-dependent manner. D-type cyclins inhibit the proteasomal degradation of p21, which competes with MMR proteins for binding to PCNA, thereby inhibiting MMR. The ability of D-type cyclins to limit MMR is CDK4- and CDK6-independent and is conserved in G0 and G1. At the G1/S transition, the timely, cullin-RING ubiquitin ligase (CRL)-dependent degradation of D-type cyclins and p21 enables MMR activity to efficiently repair DNA replication errors. Persistent expression of D-type cyclins during S-phase inhibits the binding of MMR proteins to PCNA, increases the mutational burden, and promotes microsatellite instability.


Assuntos
Ciclinas , Reparo de Erro de Pareamento de DNA , Animais , Ciclinas/genética , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Interfase , Mamíferos/metabolismo
2.
Nat Rev Mol Cell Biol ; 17(5): 280-92, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27033256

RESUMO

The roles of cyclins and their catalytic partners, the cyclin-dependent kinases (CDKs), as core components of the machinery that drives cell cycle progression are well established. Increasing evidence indicates that mammalian cyclins and CDKs also carry out important functions in other cellular processes, such as transcription, DNA damage repair, control of cell death, differentiation, the immune response and metabolism. Some of these non-canonical functions are performed by cyclins or CDKs, independently of their respective cell cycle partners, suggesting that there was a substantial divergence in the functions of these proteins during evolution.


Assuntos
Quinases Ciclina-Dependentes/fisiologia , Ciclinas/fisiologia , Animais , Ciclo Celular , Diferenciação Celular , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Humanos , Fosforilação , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Ativação Transcricional
3.
Nature ; 605(7909): 357-365, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35508654

RESUMO

The entry of mammalian cells into the DNA synthesis phase (S phase) represents a key event in cell division1. According to current models of the cell cycle, the kinase CDC7 constitutes an essential and rate-limiting trigger of DNA replication, acting together with the cyclin-dependent kinase CDK2. Here we show that CDC7 is dispensable for cell division of many different cell types, as determined using chemical genetic systems that enable acute shutdown of CDC7 in cultured cells and in live mice. We demonstrate that another cell cycle kinase, CDK1, is also active during G1/S transition both in cycling cells and in cells exiting quiescence. We show that CDC7 and CDK1 perform functionally redundant roles during G1/S transition, and at least one of these kinases must be present to allow S-phase entry. These observations revise our understanding of cell cycle progression by demonstrating that CDK1 physiologically regulates two distinct transitions during cell division cycle, whereas CDC7 has a redundant function in DNA replication.


Assuntos
Proteínas de Ciclo Celular , Fase G1 , Proteínas Serina-Treonina Quinases , Proteólise , Fase S , Animais , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo
4.
Mol Cell ; 78(3): 459-476.e13, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32240602

RESUMO

The cyclin-dependent kinase 1 (Cdk1) drives cell division. To uncover additional functions of Cdk1, we generated knockin mice expressing an analog-sensitive version of Cdk1 in place of wild-type Cdk1. In our study, we focused on embryonic stem cells (ESCs), because this cell type displays particularly high Cdk1 activity. We found that in ESCs, a large fraction of Cdk1 substrates is localized on chromatin. Cdk1 phosphorylates many proteins involved in epigenetic regulation, including writers and erasers of all major histone marks. Consistent with these findings, inhibition of Cdk1 altered histone-modification status of ESCs. High levels of Cdk1 in ESCs phosphorylate and partially inactivate Dot1l, the H3K79 methyltransferase responsible for placing activating marks on gene bodies. Decrease of Cdk1 activity during ESC differentiation de-represses Dot1l, thereby allowing coordinated expression of differentiation genes. These analyses indicate that Cdk1 functions to maintain the epigenetic identity of ESCs.


Assuntos
Proteína Quinase CDC2/metabolismo , Células-Tronco Embrionárias/fisiologia , Epigênese Genética , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Animais , Proteína Quinase CDC2/genética , Diferenciação Celular , Células Cultivadas , Imunoprecipitação da Cromatina/métodos , Feminino , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Células MCF-7 , Masculino , Camundongos , Camundongos Knockout , Fosforilação , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Nature ; 571(7766): E10, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31270456

RESUMO

An Amendment to this paper has been published and can be accessed via a link at the top of the paper. The original Letter has not been corrected.

6.
Haematologica ; 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39385738

RESUMO

Despite major therapeutic advances in the treatment of acute lymphoblastic leukemia (ALL), resistances and long-term toxicities still pose significant challenges. Cyclins and their associated cyclin-dependent kinases are one focus of cancer research when looking for targeted therapies. We discovered cyclin C as a key factor for B-ALL development and maintenance. While cyclin C is non-essential for normal hematopoiesis, CcncΔ/Δ BCR::ABL1+ B-ALL cells fail to elicit leukemia in mice. RNA sequencing experiments revealed a p53 pathway deregulation in CcncΔ/Δ BCR::ABL1+ cells resulting in the incapability of the leukemic cells to adequately respond to stress. A genome-wide CRISPR/Cas9 loss-of-function screen supplemented with additional knock-outs unveiled a dependency of human B-lymphoid cell lines on CCNC. High cyclin C levels in B-cell precursor (BCP) ALL patients were associated with poor event-free survival and increased risk of early disease recurrence after remission. Our findings highlight cyclin C as potential therapeutic target for B-ALL, particularly to enhance cancer cell sensitivity to stress and chemotherapy.

7.
Cell ; 138(2): 352-65, 2009 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-19592082

RESUMO

Cyclins are regulatory subunits of cyclin-dependent kinases. Cyclin A, the first cyclin ever cloned, is thought to be an essential component of the cell-cycle engine. Mammalian cells encode two A-type cyclins, testis-specific cyclin A1 and ubiquitously expressed cyclin A2. Here, we tested the requirement for cyclin A function using conditional knockout mice lacking both A-type cyclins. We found that acute ablation of cyclin A in fibroblasts did not affect cell proliferation, but led to prolonged expression of another cyclin, cyclin E, across the cell cycle. However, combined ablation of all A- and E-type cyclins extinguished cell division. In contrast, cyclin A function was essential for cell-cycle progression of hematopoietic and embryonic stem cells. Expression of cyclin A is particularly high in these compartments, which might render stem cells dependent on cyclin A, whereas in fibroblasts cyclins A and E play redundant roles in cell proliferation.


Assuntos
Ciclina A/metabolismo , Embrião de Mamíferos/citologia , Células-Tronco Embrionárias/metabolismo , Fibroblastos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Animais , Ciclina A/genética , Ciclina E/genética , Ciclina E/metabolismo , Camundongos , Camundongos Knockout
8.
Nature ; 553(7686): 91-95, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29160310

RESUMO

Treatments that target immune checkpoints, such as the one mediated by programmed cell death protein 1 (PD-1) and its ligand PD-L1, have been approved for treating human cancers with durable clinical benefit. However, many patients with cancer fail to respond to compounds that target the PD-1 and PD-L1 interaction, and the underlying mechanism(s) is not well understood. Recent studies revealed that response to PD-1-PD-L1 blockade might correlate with PD-L1 expression levels in tumour cells. Hence, it is important to understand the mechanistic pathways that control PD-L1 protein expression and stability, which can offer a molecular basis to improve the clinical response rate and efficacy of PD-1-PD-L1 blockade in patients with cancer. Here we show that PD-L1 protein abundance is regulated by cyclin D-CDK4 and the cullin 3-SPOP E3 ligase via proteasome-mediated degradation. Inhibition of CDK4 and CDK6 (hereafter CDK4/6) in vivo increases PD-L1 protein levels by impeding cyclin D-CDK4-mediated phosphorylation of speckle-type POZ protein (SPOP) and thereby promoting SPOP degradation by the anaphase-promoting complex activator FZR1. Loss-of-function mutations in SPOP compromise ubiquitination-mediated PD-L1 degradation, leading to increased PD-L1 levels and reduced numbers of tumour-infiltrating lymphocytes in mouse tumours and in primary human prostate cancer specimens. Notably, combining CDK4/6 inhibitor treatment with anti-PD-1 immunotherapy enhances tumour regression and markedly improves overall survival rates in mouse tumour models. Our study uncovers a novel molecular mechanism for regulating PD-L1 protein stability by a cell cycle kinase and reveals the potential for using combination treatment with CDK4/6 inhibitors and PD-1-PD-L1 immune checkpoint blockade to enhance therapeutic efficacy for human cancers.


Assuntos
Antígeno B7-H1/metabolismo , Proteínas Culina/metabolismo , Ciclina D/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Vigilância Imunológica , Neoplasias/imunologia , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Evasão Tumoral/imunologia , Proteínas 14-3-3/metabolismo , Animais , Antígeno B7-H1/biossíntese , Proteínas Cdh1/metabolismo , Ciclo Celular , Linhagem Celular , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Feminino , Humanos , Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/imunologia , Masculino , Camundongos , Proteínas Nucleares/química , Fosforilação , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias da Próstata/imunologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Proteólise , Proteínas Repressoras/química
9.
Mol Cell ; 62(6): 929-942, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27237051

RESUMO

The retinoblastoma (Rb) protein exerts its tumor suppressor function primarily by inhibiting the E2F family of transcription factors that govern cell-cycle progression. However, it remains largely elusive whether the hyper-phosphorylated, non-E2F1-interacting form of Rb has any physiological role. Here we report that hyper-phosphorylated Rb directly binds to and suppresses the function of mTORC2 but not mTORC1. Mechanistically, Rb, but not p107 or p130, interacts with Sin1 and blocks the access of Akt to mTORC2, leading to attenuated Akt activation and increased sensitivity to chemotherapeutic drugs. As such, inhibition of Rb phosphorylation by depleting cyclin D or using CDK4/6 inhibitors releases Rb-mediated mTORC2 suppression. This, in turn, leads to elevated Akt activation to confer resistance to chemotherapeutic drugs in Rb-proficient cells, which can be attenuated with Akt inhibitors. Therefore, our work provides a molecular basis for the synergistic usage of CDK4/6 and Akt inhibitors in treating Rb-proficient cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Complexos Multiproteicos/metabolismo , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteína do Retinoblastoma/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Ciclina D/genética , Ciclina D/metabolismo , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Ativação Enzimática , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Terapia de Alvo Molecular , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Transfecção
10.
Nature ; 546(7658): 426-430, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28607489

RESUMO

D-type cyclins (D1, D2 and D3) and their associated cyclin-dependent kinases (CDK4 and CDK6) are components of the core cell cycle machinery that drives cell proliferation. Inhibitors of CDK4 and CDK6 are currently being tested in clinical trials for patients with several cancer types, with promising results. Here, using human cancer cells and patient-derived xenografts in mice, we show that the cyclin D3-CDK6 kinase phosphorylates and inhibits the catalytic activity of two key enzymes in the glycolytic pathway, 6-phosphofructokinase and pyruvate kinase M2. This re-directs the glycolytic intermediates into the pentose phosphate (PPP) and serine pathways. Inhibition of cyclin D3-CDK6 in tumour cells reduces flow through the PPP and serine pathways, thereby depleting the antioxidants NADPH and glutathione. This, in turn, increases the levels of reactive oxygen species and causes apoptosis of tumour cells. The pro-survival function of cyclin D-associated kinase operates in tumours expressing high levels of cyclin D3-CDK6 complexes. We propose that measuring the levels of cyclin D3-CDK6 in human cancers might help to identify tumour subsets that undergo cell death and tumour regression upon inhibition of CDK4 and CDK6. Cyclin D3-CDK6, through its ability to link cell cycle and cell metabolism, represents a particularly powerful oncoprotein that affects cancer cells at several levels, and this property can be exploited for anti-cancer therapy.


Assuntos
Ciclina D3/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Feminino , Glicólise/efeitos dos fármacos , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Estresse Oxidativo/efeitos dos fármacos , Via de Pentose Fosfato/efeitos dos fármacos , Fosfofrutoquinase-1/metabolismo , Fosforilação/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/enzimologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Purinas/farmacologia , Purinas/uso terapêutico , Piruvato Quinase/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Serina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Proc Natl Acad Sci U S A ; 117(29): 17177-17186, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32631996

RESUMO

Hepatocyte nuclear factor 4α (HNF4α) is a master regulator of liver function and a tumor suppressor in hepatocellular carcinoma (HCC). In this study, we explore the reciprocal negative regulation of HNF4α and cyclin D1, a key cell cycle protein in the liver. Transcriptomic analysis of cultured hepatocyte and HCC cells found that cyclin D1 knockdown induced the expression of a large network of HNF4α-regulated genes. Chromatin immunoprecipitation-sequencing (ChIP-seq) demonstrated that cyclin D1 inhibits the binding of HNF4α to thousands of targets in the liver, thereby diminishing the expression of associated genes that regulate diverse metabolic activities. Conversely, acute HNF4α deletion in the liver induces cyclin D1 and hepatocyte cell cycle progression; concurrent cyclin D1 ablation blocked this proliferation, suggesting that HNF4α maintains proliferative quiescence in the liver, at least, in part, via repression of cyclin D1. Acute cyclin D1 deletion in the regenerating liver markedly inhibited hepatocyte proliferation after partial hepatectomy, confirming its pivotal role in cell cycle progression in this in vivo model, and enhanced the expression of HNF4α target proteins. Hepatocyte cyclin D1 gene ablation caused markedly increased postprandial liver glycogen levels (in a HNF4α-dependent fashion), indicating that the cyclin D1-HNF4α axis regulates glucose metabolism in response to feeding. In AML12 hepatocytes, cyclin D1 depletion led to increased glucose uptake, which was negated if HNF4α was depleted simultaneously, and markedly elevated glycogen synthesis. To summarize, mutual repression by cyclin D1 and HNF4α coordinately controls the cell cycle machinery and metabolism in the liver.


Assuntos
Ciclo Celular/fisiologia , Ciclina D1/genética , Ciclina D1/metabolismo , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Fígado/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Hepatócitos/metabolismo , Hepatócitos/patologia , Regeneração Hepática/genética , Regeneração Hepática/fisiologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Knockout
12.
Proc Natl Acad Sci U S A ; 117(14): 8001-8012, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32193336

RESUMO

The cyclin-dependent kinase 5 (CDK5), originally described as a neuronal-specific kinase, is also frequently activated in human cancers. Using conditional CDK5 knockout mice and a mouse model of highly metastatic melanoma, we found that CDK5 is dispensable for the growth of primary tumors. However, we observed that ablation of CDK5 completely abrogated the metastasis, revealing that CDK5 is essential for the metastatic spread. In mouse and human melanoma cells CDK5 promotes cell invasiveness by directly phosphorylating an intermediate filament protein, vimentin, thereby inhibiting assembly of vimentin filaments. Chemical inhibition of CDK5 blocks the metastatic spread of patient-derived melanomas in patient-derived xenograft (PDX) mouse models. Hence, inhibition of CDK5 might represent a very potent therapeutic strategy to impede the metastatic dissemination of malignant cells.


Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Melanoma Experimental/patologia , Melanoma/patologia , Neoplasias Cutâneas/patologia , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Quinase 5 Dependente de Ciclina/genética , Feminino , Dosagem de Genes , Humanos , Masculino , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/mortalidade , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/genética , Camundongos , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Prognóstico , Pele/patologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/mortalidade , Vimentina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
13.
J Proteome Res ; 21(2): 494-506, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35044772

RESUMO

Kinases govern many cellular responses through the reversible transfer of a phosphate moiety to their substrates. However, pairing a substrate with a kinase is challenging. In proximity labeling experiments, proteins proximal to a target protein are marked by biotinylation, and mass spectrometry can be used for their identification. Here, we combine ascorbate peroxidase (APEX) proximity labeling and a phosphorylation enrichment-based workflow, Phospho-APEX (pAPEX), to rapidly identify phosphorylated and biotinylated neighbor proteins which can be considered for candidate substrates. The pAPEX strategy enriches and quantifies differences in proximity for proteins and phosphorylation sites proximal to an APEX2-tagged kinase under the kinase "ON" and kinase "OFF" conditions. As a proof of concept, we identified candidate substrates of MAPK1 in HEK293T and HCT116 cells and candidate substrates of PKA in HEK293T cells. In addition to many known substrates, C15orf39 was identified and confirmed as a novel MAPK1 substrate. In all, we adapted the proximity labeling-based platform to accommodate phosphorylation analysis for kinase substrate identification.


Assuntos
Fosforilação , Ascorbato Peroxidases/química , Ascorbato Peroxidases/metabolismo , Biotinilação , Células HEK293 , Humanos , Espectrometria de Massas , Especificidade por Substrato
14.
Mol Cell ; 54(6): 932-945, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24857551

RESUMO

Quiescence (G0) allows cycling cells to reversibly cease proliferation. A decision to enter quiescence is suspected of occurring early in G1, before the restriction point (R). Surprisingly, we have identified G2 as an interval during which inhibition of the protein phosphatase PP2A results in failure to exhibit stable quiescence. This effect is accompanied by shortening of the ensuing G1. The PP2A subcomplex required for stable G0 contains the B56γ B subunit. After PP2A inhibition in G2, aberrant overexpression of cyclin E occurs during mitosis and is responsible for overriding quiescence. Strikingly, suppression of Ras signaling re-establishes normal cyclin E levels during M and restores G0. These data point to PP2A-B56γ-driven Ras signaling modulation in G2 as essential for suppressing aberrant cyclin E expression during mitosis and thereby achieving normal G0 control. Thus, G2 is an interval during which the length and growth factor dependence of the next G1 interval are established.


Assuntos
Fase G1/genética , Fase G2/genética , Proteína Oncogênica p21(ras)/genética , Proteína Fosfatase 2/genética , Fase de Repouso do Ciclo Celular/fisiologia , Linhagem Celular , Ciclina E/biossíntese , Humanos , Células MCF-7 , Mitose/genética , Subunidades Proteicas/genética , Interferência de RNA , RNA Interferente Pequeno , Transdução de Sinais/genética
15.
Immunity ; 37(5): 840-53, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23159226

RESUMO

Proliferation and differentiation are tightly coordinated to produce an appropriate number of differentiated cells and often exhibit an antagonistic relationship. Developing T cells, which arise in the thymus from a minute number of bone-marrow-derived progenitors, undergo a major expansion upon pre-T cell receptor (TCR) expression. The burst of proliferation coincides with differentiation toward the αß T cell lineage-but the two processes were previously thought to be independent from one another, although both were driven by signaling from pre-TCR and Notch receptors. Here we report that proliferation at this step was not only absolutely required for differentiation but also that its ectopic activation was sufficient to substantially rescue differentiation in the absence of Notch signaling. Consistently, pharmacological inhibition of the cell cycle machinery also blocked differentiation in vivo. Thus the proliferation step is strictly required prior to differentiation of immature thymocytes.


Assuntos
Linfócitos T/citologia , Linfócitos T/imunologia , Animais , Diferenciação Celular/imunologia , Divisão Celular/imunologia , Divisão Celular/fisiologia , Processos de Crescimento Celular/fisiologia , Linhagem da Célula , Células Cultivadas , Ativação Linfocitária , Camundongos , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores Notch/imunologia , Receptores Notch/metabolismo , Transdução de Sinais/imunologia , Transdução de Sinais/fisiologia , Linfócitos T/metabolismo , Timócitos/imunologia , Timócitos/metabolismo , Timócitos/fisiologia , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo
16.
Proc Natl Acad Sci U S A ; 115(5): 1015-1020, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29339491

RESUMO

E-type cyclins (cyclins E1 and E2) are components of the core cell cycle machinery and are overexpressed in many human tumor types. E cyclins are thought to drive tumor cell proliferation by activating the cyclin-dependent kinase 2 (CDK2). The cyclin E1 gene represents the site of recurrent integration of the hepatitis B virus in the pathogenesis of hepatocellular carcinoma, and this event is associated with strong up-regulation of cyclin E1 expression. Regardless of the underlying mechanism of tumorigenesis, the majority of liver cancers overexpress E-type cyclins. Here we used conditional cyclin E knockout mice and a liver cancer model to test the requirement for the function of E cyclins in liver tumorigenesis. We show that a ubiquitous, global shutdown of E cyclins did not visibly affect postnatal development or physiology of adult mice. However, an acute ablation of E cyclins halted liver cancer progression. We demonstrated that also human liver cancer cells critically depend on E cyclins for proliferation. In contrast, we found that the function of the cyclin E catalytic partner, CDK2, is dispensable in liver cancer cells. We observed that E cyclins drive proliferation of tumor cells in a CDK2- and kinase-independent mechanism. Our study suggests that compounds which degrade or inhibit cyclin E might represent a highly selective therapeutic strategy for patients with liver cancer, as these compounds would selectively cripple proliferation of tumor cells, while sparing normal tissues.


Assuntos
Ciclina E/metabolismo , Neoplasias Hepáticas/metabolismo , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Ciclina E/deficiência , Ciclina E/genética , Quinase 2 Dependente de Ciclina/metabolismo , Ciclinas/deficiência , Ciclinas/genética , Ciclinas/metabolismo , Progressão da Doença , Feminino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Masculino , Camundongos , Camundongos Knockout , Proteínas Oncogênicas/deficiência , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo
17.
Nature ; 510(7506): 547-51, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24870244

RESUMO

Insulin constitutes a principal evolutionarily conserved hormonal axis for maintaining glucose homeostasis; dysregulation of this axis causes diabetes. PGC-1α (peroxisome-proliferator-activated receptor-γ coactivator-1α) links insulin signalling to the expression of glucose and lipid metabolic genes. The histone acetyltransferase GCN5 (general control non-repressed protein 5) acetylates PGC-1α and suppresses its transcriptional activity, whereas sirtuin 1 deacetylates and activates PGC-1α. Although insulin is a mitogenic signal in proliferative cells, whether components of the cell cycle machinery contribute to its metabolic action is poorly understood. Here we report that in mice insulin activates cyclin D1-cyclin-dependent kinase 4 (Cdk4), which, in turn, increases GCN5 acetyltransferase activity and suppresses hepatic glucose production independently of cell cycle progression. Through a cell-based high-throughput chemical screen, we identify a Cdk4 inhibitor that potently decreases PGC-1α acetylation. Insulin/GSK-3ß (glycogen synthase kinase 3-beta) signalling induces cyclin D1 protein stability by sequestering cyclin D1 in the nucleus. In parallel, dietary amino acids increase hepatic cyclin D1 messenger RNA transcripts. Activated cyclin D1-Cdk4 kinase phosphorylates and activates GCN5, which then acetylates and inhibits PGC-1α activity on gluconeogenic genes. Loss of hepatic cyclin D1 results in increased gluconeogenesis and hyperglycaemia. In diabetic models, cyclin D1-Cdk4 is chronically elevated and refractory to fasting/feeding transitions; nevertheless further activation of this kinase normalizes glycaemia. Our findings show that insulin uses components of the cell cycle machinery in post-mitotic cells to control glucose homeostasis independently of cell division.


Assuntos
Ciclo Celular , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Transdução de Sinais , Acetilação , Aminoácidos/farmacologia , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Células Cultivadas , Ciclina D1/deficiência , Ciclina D1/genética , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Diabetes Mellitus/metabolismo , Ativação Enzimática , Jejum , Deleção de Genes , Gluconeogênese/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Histona Acetiltransferases/metabolismo , Homeostase , Humanos , Hiperglicemia/metabolismo , Hiperinsulinismo/metabolismo , Masculino , Camundongos , Fosforilação , RNA Mensageiro/análise , RNA Mensageiro/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos
18.
Nature ; 508(7497): 541-5, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24670654

RESUMO

Akt, also known as protein kinase B, plays key roles in cell proliferation, survival and metabolism. Akt hyperactivation contributes to many pathophysiological conditions, including human cancers, and is closely associated with poor prognosis and chemo- or radiotherapeutic resistance. Phosphorylation of Akt at S473 (ref. 5) and T308 (ref. 6) activates Akt. However, it remains unclear whether further mechanisms account for full Akt activation, and whether Akt hyperactivation is linked to misregulated cell cycle progression, another cancer hallmark. Here we report that Akt activity fluctuates across the cell cycle, mirroring cyclin A expression. Mechanistically, phosphorylation of S477 and T479 at the Akt extreme carboxy terminus by cyclin-dependent kinase 2 (Cdk2)/cyclin A or mTORC2, under distinct physiological conditions, promotes Akt activation through facilitating, or functionally compensating for, S473 phosphorylation. Furthermore, deletion of the cyclin A2 allele in the mouse olfactory bulb leads to reduced S477/T479 phosphorylation and elevated cellular apoptosis. Notably, cyclin A2-deletion-induced cellular apoptosis in mouse embryonic stem cells is partly rescued by S477D/T479E-Akt1, supporting a physiological role for cyclin A2 in governing Akt activation. Together, the results of our study show Akt S477/T479 phosphorylation to be an essential layer of the Akt activation mechanism to regulate its physiological functions, thereby providing a new mechanistic link between aberrant cell cycle progression and Akt hyperactivation in cancer.


Assuntos
Ciclo Celular/fisiologia , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Apoptose/genética , Proliferação de Células , Ciclina A2/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Ativação Enzimática , Masculino , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Complexos Multiproteicos/metabolismo , Neoplasias/enzimologia , Neoplasias/patologia , Bulbo Olfatório/citologia , Bulbo Olfatório/enzimologia , Bulbo Olfatório/metabolismo , Proteína Oncogênica v-akt/química , Proteína Oncogênica v-akt/metabolismo , Fosforilação , Fosfosserina/metabolismo , Fosfotreonina/metabolismo , Serina-Treonina Quinases TOR/metabolismo
19.
Proc Natl Acad Sci U S A ; 114(40): 10660-10665, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28923932

RESUMO

MicroRNAs (miRNAs) have been known to affect various biological processes by repressing expression of specific genes. Here we describe an essential function of the miR-34/449 family during differentiation of epithelial cells. We found that miR-34/449 suppresses the cell-cycle machinery in vivo and promotes cell-cycle exit, thereby allowing epithelial cell differentiation. Constitutive ablation of all six members of this miRNA family causes derepression of multiple cell cycle-promoting proteins, thereby preventing epithelial cells from exiting the cell cycle and entering a quiescent state. As a result, formation of motile multicilia is strongly inhibited in several tissues such as the respiratory epithelium and the fallopian tube. Consequently, mice lacking miR-34/449 display infertility as well as severe chronic airway disease leading to postnatal death. These results demonstrate that miRNA-mediated repression of the cell cycle is required to allow epithelial cell differentiation.


Assuntos
Proteínas de Ciclo Celular/biossíntese , Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , MicroRNAs/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Linhagem Celular , Cílios/genética , Cílios/metabolismo , Tubas Uterinas/citologia , Tubas Uterinas/metabolismo , Feminino , Camundongos , MicroRNAs/genética , Células-Tronco Embrionárias Murinas/citologia , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo
20.
Genes Dev ; 26(18): 2075-87, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22929040

RESUMO

Genome-wide association studies (GWASs) have identified a genetic variant of moderate effect size at 6p21.1 associated with erythrocyte traits in humans. We show that this variant affects an erythroid-specific enhancer of CCND3. A Ccnd3 knockout mouse phenocopies these erythroid phenotypes, with a dramatic increase in erythrocyte size and a concomitant decrease in erythrocyte number. By examining human and mouse primary erythroid cells, we demonstrate that the CCND3 gene product cyclin D3 regulates the number of cell divisions that erythroid precursors undergo during terminal differentiation, thereby controlling erythrocyte size and number. We illustrate how cell type-specific specialization can occur for general cell cycle components-a finding resulting from the biological follow-up of unbiased human genetic studies.


Assuntos
Ciclo Celular/fisiologia , Diferenciação Celular , Ciclina D3/metabolismo , Eritrócitos/citologia , Eritrócitos/metabolismo , Animais , Contagem de Células , Tamanho Celular , Células Cultivadas , Ciclina D3/genética , Eritropoese/fisiologia , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Células K562 , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA