Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Infect Immun ; 86(7)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29735521

RESUMO

Long-lasting and sterile homologous protection against malaria can be achieved by the exposure of malaria-naive volunteers under chemoprophylaxis to Plasmodium falciparum-infected mosquitoes (chemoprophylaxis and sporozoite [CPS] immunization). While CPS-induced antibodies neutralize sporozoite infectivity in vitro and in vivo, antibody-mediated effector mechanisms are still poorly understood. Here, we investigated whether complement contributes to CPS-induced preerythrocytic immunity. Sera collected before and after CPS immunization in the presence of active or inactive complement were assessed for the recognition of homologous NF54 and heterologous NF135.C10 sporozoites, complement fixation, sporozoite lysis, and possible subsequent effects on in vitro sporozoite infectivity in human hepatocytes. CPS immunization induced sporozoite-specific IgM (P < 0.0001) and IgG (P = 0.001) antibodies with complement-fixing capacities (P < 0.0001). Sporozoite lysis (P = 0.017), traversal (P < 0.0001), and hepatocyte invasion inhibition (P < 0.0001) by CPS-induced antibodies were strongly enhanced in the presence of active complement. Complement-mediated invasion inhibition in the presence of CPS-induced antibodies negatively correlated with cumulative parasitemia during CPS immunizations (P = 0.013). While IgG antibodies similarly recognized homologous and heterologous sporozoites, IgM binding to heterologous sporozoites was reduced (P = 0.023). Although CPS-induced antibodies did not differ in their abilities to fix complement, lyse sporozoites, or inhibit the traversal of homologous and heterologous sporozoites, heterologous sporozoite invasion was more strongly inhibited in the presence of active complement (P = 0.008). These findings demonstrate that CPS-induced antibodies have complement-fixing activity, thereby significantly further enhancing the functional inhibition of homologous and heterologous sporozoite infectivity in vitro The combined data highlight the importance of complement as an additional immune effector mechanism in preerythrocytic immunity after whole-parasite immunization against Plasmodium falciparum malaria.


Assuntos
Formação de Anticorpos/fisiologia , Antimaláricos/imunologia , Antimaláricos/uso terapêutico , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/imunologia , Esporozoítos/efeitos dos fármacos , Formação de Anticorpos/imunologia , Humanos , Imunização , Esporozoítos/imunologia , Vacinação
2.
Mol Microbiol ; 101(1): 78-91, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26991313

RESUMO

Multidrug resistance (MDR) proteins belong to the B subfamily of the ATP Binding Cassette (ABC) transporters, which export a wide range of compounds including pharmaceuticals. In this study, we used reverse genetics to study the role of all seven Plasmodium MDR proteins during the life cycle of malaria parasites. Four P. berghei genes (encoding MDR1, 4, 6 and 7) were refractory to deletion, indicating a vital role during blood stage multiplication and validating them as potential targets for antimalarial drugs. Mutants lacking expression of MDR2, MDR3 and MDR5 were generated in both P. berghei and P. falciparum, indicating a dispensable role for blood stage development. Whereas P. berghei mutants lacking MDR3 and MDR5 had a reduced blood stage multiplication in vivo, blood stage growth of P. falciparum mutants in vitro was not significantly different. Oocyst maturation and sporozoite formation in Plasmodium mutants lacking MDR2 or MDR5 was reduced. Sporozoites of these P. berghei mutants were capable of infecting mice and life cycle completion, indicating the absence of vital roles during liver stage development. Our results demonstrate vital and dispensable roles of MDR proteins during blood stages and an important function in sporogony for MDR2 and MDR5 in both Plasmodium species.


Assuntos
Culicidae/parasitologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Plasmodium berghei/efeitos dos fármacos , Plasmodium berghei/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Animais , Antimaláricos/farmacologia , Resistência a Múltiplos Medicamentos , Feminino , Estágios do Ciclo de Vida , Malária/parasitologia , Malária Falciparum/parasitologia , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Oócitos/metabolismo , Plasmodium berghei/genética , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Esporozoítos/metabolismo
3.
BMC Med ; 15(1): 168, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28903777

RESUMO

BACKGROUND: A highly efficacious vaccine is needed for malaria control and eradication. Immunization with Plasmodium falciparum NF54 parasites under chemoprophylaxis (chemoprophylaxis and sporozoite (CPS)-immunization) induces the most efficient long-lasting protection against a homologous parasite. However, parasite genetic diversity is a major hurdle for protection against heterologous strains. METHODS: We conducted a double-blind, randomized controlled trial in 39 healthy participants of NF54-CPS immunization by bites of 45 NF54-infected (n = 24 volunteers) or uninfected mosquitoes (placebo; n = 15 volunteers) against a controlled human malaria infection with the homologous NF54 or the genetically distinct NF135.C10 and NF166.C8 clones. Cellular and humoral immune assays were performed as well as genetic characterization of the parasite clones. RESULTS: NF54-CPS immunization induced complete protection in 5/5 volunteers against NF54 challenge infection at 14 weeks post-immunization, but sterilely protected only 2/10 and 1/9 volunteers against NF135.C10 and NF166.C8 challenge infection, respectively. Post-immunization plasma showed a significantly lower capacity to block heterologous parasite development in primary human hepatocytes compared to NF54. Whole genome sequencing showed that NF135.C10 and NF166.C8 have amino acid changes in multiple antigens targeted by CPS-induced antibodies. Volunteers protected against heterologous challenge were among the stronger immune responders to in vitro parasite stimulation. CONCLUSIONS: Although highly protective against homologous parasites, NF54-CPS-induced immunity is less effective against heterologous parasite clones both in vivo and in vitro. Our data indicate that whole sporozoite-based vaccine approaches require more potent immune responses for heterologous protection. TRIAL REGISTRATION: This trial is registered in clinicaltrials.gov, under identifier NCT02098590 .


Assuntos
Imunização/métodos , Vacinas Antimaláricas/imunologia , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/imunologia , Esporozoítos/imunologia , Adolescente , Adulto , Animais , Método Duplo-Cego , Voluntários Saudáveis , Humanos , Adulto Jovem
4.
Malar J ; 16(1): 315, 2017 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-28779750

RESUMO

BACKGROUND: Mosquito-feeding assays are important tools to guide the development and support the evaluation of transmission-blocking interventions. These functional bioassays measure the sporogonic development of gametocytes in blood-fed mosquitoes. Measuring the infectivity of low gametocyte densities has become increasingly important in malaria elimination scenarios. This will pose challenges to the sensitivity and throughput of existing mosquito-feeding assay protocols. Here, different gametocyte concentration methods of blood samples were explored to optimize conditions for detection of positive mosquito infections. METHODS: Mature gametocytes of Plasmodium falciparum were diluted into whole blood samples of malaria-naïve volunteers. Standard centrifugation, Percoll gradient, magnetic cell sorting (MACS) enrichment were compared using starting blood volumes larger than the control (direct) feed. RESULTS: MACS gametocyte enrichment resulted in the highest infection intensity with statistically significant increases in mean oocyst density in 2 of 3 experiments (p = 0.0003; p ≤ 0.0001; p = 0.2348). The Percoll gradient and standard centrifugation procedures resulted in variable infectivity. A significant increase in the proportion of infected mosquitoes and oocyst density was found when larger volumes of gametocyte-infected blood were used with the MACS procedure. CONCLUSIONS: The current study demonstrates that concentration methods of P. falciparum gametocyte-infected whole blood samples can enhance transmission in mosquito-feeding assays. Gametocyte purification by MACS was the most efficient method, allowing the assessment of gametocyte infectivity in low-density gametocyte infections, as can be expected in natural or experimental conditions.


Assuntos
Anopheles/parasitologia , Separação Celular , Malária Falciparum/sangue , Parasitologia/métodos , Plasmodium falciparum/isolamento & purificação , Animais , Humanos , Magnetismo , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Mosquitos Vetores/parasitologia
5.
Malar J ; 16(1): 356, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28877707

RESUMO

BACKGROUND: The malaria infection status of mosquitoes is commonly determined by microscopic detection of oocysts on the dissected mosquito midgut. This method is labour-intensive, does not allow processing of large numbers of mosquitoes and can be challenging in terms of objective classification of oocysts. Here, a semi-high-throughput bead-beating ELISA method is proposed for detection of the circumsporozoite protein (CSP) followed by confirmation by quantitative PCR (qPCR). METHODS: Cultured Plasmodium falciparum gametocytes were offered to Anopheles stephensi mosquitoes and examined by microscopy. After bead-beating, mosquito homogenate was examined by CSP-ELISA and 18S qPCR. As negative controls, mosquitoes that were offered a heat-inactivated gametocyte blood meal were used. The CSP-ELISA/qPCR methodology was applied to high and low-intensity infections of cultured P. falciparum gametocytes. A similar methodology optimized for P. vivax was used on mosquitoes that were offered blood from Ethiopian donors who were naturally infected with P. vivax. RESULTS: There was considerable variation in CSP-ELISA signal and qPCR values in mosquitoes with low oocyst intensities. There was a strong agreement mosquito positivity by CSP-ELISA and by qPCR in mosquitoes that fed on cultured P. falciparum material (agreement 96.9%; kappa = 0.97) and naturally infected P. vivax parasite carriers [agreement 92.4% (kappa = 0.83)]. CONCLUSIONS: The proposed bead-beating CSP-ELISA/qPCR methodology considerably increases throughput for the detection of mosquito infection. qPCR remains necessary to confirm infections in mosquitoes with low CSP-ELISA signal. This methodology may prove particularly useful for studies where very low mosquito infection prevalence is expected and study sites where experience with oocyst detection is limited.


Assuntos
Anopheles/parasitologia , Ensaio de Imunoadsorção Enzimática/métodos , Plasmodium falciparum/isolamento & purificação , Plasmodium vivax/isolamento & purificação , Proteínas de Protozoários/sangue , Proteínas de Protozoários/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Animais , Antígenos de Protozoários/sangue , Antígenos de Protozoários/isolamento & purificação , DNA de Protozoário , Feminino , Humanos , Insetos Vetores/parasitologia , Oocistos , Plasmodium falciparum/classificação , Plasmodium falciparum/genética , Plasmodium vivax/classificação , Plasmodium vivax/genética , RNA Ribossômico 18S/genética , Sensibilidade e Especificidade
6.
Proc Natl Acad Sci U S A ; 110(19): 7862-7, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23599283

RESUMO

Volunteers immunized under chloroquine chemoprophylaxis with Plasmodium falciparum sporozoites (CPS) develop complete, long-lasting protection against homologous sporozoite challenge. Chloroquine affects neither sporozoites nor liver-stages, but kills only asexual forms in erythrocytes once released from the liver into the circulation. Consequently, CPS immunization exposes the host to antigens from both preerythrocytic and blood stages, and induced immunity might target either of these stages. We therefore explored the life cycle stage specificity of CPS-induced protection. Twenty-five malaria-naïve volunteers were enrolled in a clinical trial, 15 of whom received CPS immunization. Five immunized subjects and five controls received a sporozoite challenge by mosquito bites, whereas nine immunized and five control subjects received an i.v. challenge with P. falciparum-infected erythrocytes. The latter approach completely bypasses preerythrocytic stages, enabling a direct comparison of protection against either life cycle stage. CPS-immunized subjects (13 of 14) developed anticircumsporozoite antibodies, whereas only one volunteer generated minimal titers against typical blood-stage antigens. IgG from CPS-immunized volunteers did not inhibit asexual blood-stage growth in vitro. All CPS-immunized subjects (5 of 5) were protected against sporozoite challenge. In contrast, nine of nine CPS-immunized subjects developed parasitemia after blood-stage challenge, with identical prepatent periods and blood-stage multiplication rates compared with controls. Intravenously challenged CPS-immunized subjects showed earlier fever and increased plasma concentrations of inflammatory markers D-dimer, IFN-γ, and monokine induced by IFN-γ than i.v. challenged controls. The complete lack of protection against blood-stage challenge indicates that CPS-induced protection is mediated by immunity against preerythrocytic stages. However, evidence is presented for immune recognition of P. falciparum-infected erythrocytes, suggesting memory responses unable to generate functional immunity.


Assuntos
Cloroquina/uso terapêutico , Vacinas Antimaláricas/uso terapêutico , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Esporozoítos/imunologia , Adolescente , Adulto , Animais , Anopheles , Antígenos de Protozoários/imunologia , Antimaláricos/uso terapêutico , Eritrócitos/parasitologia , Humanos , Cinética , Malária Falciparum/tratamento farmacológico , Resultado do Tratamento , Adulto Jovem
7.
J Infect Dis ; 210(9): 1456-63, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24829466

RESUMO

BACKGROUND: The development of drugs and vaccines to reduce malaria transmission is an important part of eradication plans. The transmission-reducing activity (TRA) of these agents is currently determined in the standard membrane-feeding assay (SMFA), based on subjective microscopy-based readouts and with limitations in upscaling and throughput. METHODS: Using a Plasmodium falciparum strain expressing the firefly luciferase protein, we present a luminescence-based approach to SMFA evaluation that eliminates the requirement for mosquito dissections in favor of a simple approach in which whole mosquitoes are homogenized and examined directly for luciferase activity. RESULTS: Analysis of 6860 Anopheles stephensi mosquitoes across 68 experimental feeds shows that the luminescence assay was as sensitive as microscopy for infection detection. The mean luminescence intensity of individual and pooled mosquitoes accurately quantifies mean oocyst intensity and generates comparable TRA estimates. The luminescence assay presented here could increase SMFA throughput so that 10-30 experimental feeds could be evaluated in a single 96-well plate. CONCLUSIONS: This new method of assessing Plasmodium infection and transmission intensity could expedite the screening of novel drug compounds, vaccine candidates, and sera from malaria-exposed individuals for TRA. Luminescence-based estimates of oocyst intensity in individual mosquitoes should be interpreted with caution.


Assuntos
Anopheles/parasitologia , Proteínas de Fluorescência Verde , Luciferases , Malária Falciparum/transmissão , Plasmodium falciparum/fisiologia , Animais , Feminino , Humanos , Medições Luminescentes , Microscopia , Organismos Geneticamente Modificados/genética , Organismos Geneticamente Modificados/fisiologia , Plasmodium falciparum/genética
8.
J Infect Dis ; 207(4): 656-60, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23186785

RESUMO

UNLABELLED: We established a new field clone of Plasmodium falciparum for use in controlled human malaria infections and vaccine studies to complement the current small portfolio of P. falciparum strains, primarily based on NF54. The Cambodian clone NF135.C10 consistently produced gametocytes and generated substantial numbers of sporozoites in Anopheles mosquitoes and diverged from NF54 parasites by genetic markers. In a controlled human malaria infection trial, 3 of 5 volunteers challenged by mosquitoes infected with NF135.C10 and 4 of 5 challenged with NF54 developed parasitemia as detected with microscopy. The 2 strains induced similar clinical signs and symptoms as well as cellular immunological responses. CLINICAL TRIALS REGISTRATION: NCT01002833.


Assuntos
Antimaláricos/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/fisiopatologia , Parasitemia/tratamento farmacológico , Parasitemia/fisiopatologia , Plasmodium falciparum/patogenicidade , Adolescente , Adulto , Animais , Anopheles/parasitologia , Antimaláricos/administração & dosagem , Atovaquona/administração & dosagem , Atovaquona/uso terapêutico , Genótipo , Humanos , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Parasitemia/imunologia , Parasitemia/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Proguanil/administração & dosagem , Proguanil/uso terapêutico , Resultado do Tratamento , Adulto Jovem
9.
Sci Rep ; 8(1): 410, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29323249

RESUMO

Plasmodium gametocytes are the sexual forms of the malaria parasite essential for transmission to mosquitoes. To better understand how gametocytes differ from asexual blood-stage parasites, we performed a systematic analysis of available 'omics data for P. falciparum and other Plasmodium species. 18 transcriptomic and proteomic data sets were evaluated for the presence of curated "gold standards" of 41 gametocyte-specific versus 46 non-gametocyte genes and integrated using Bayesian probabilities, resulting in gametocyte-specificity scores for all P. falciparum genes. To illustrate the utility of the gametocyte score, we explored newly predicted gametocyte-specific genes as potential biomarkers of gametocyte carriage and exposure. We analyzed the humoral immune response in field samples against 30 novel gametocyte-specific antigens and found five antigens to be differentially recognized by gametocyte carriers as compared to malaria-infected individuals without detectable gametocytes. We also validated the gametocyte-specificity of 15 identified gametocyte transcripts on culture material and samples from naturally infected individuals, resulting in eight transcripts that were >1000-fold higher expressed in gametocytes compared to asexual parasites and whose transcript abundance allowed gametocyte detection in naturally infected individuals. Our integrated genome-wide gametocyte-specificity scores provide a comprehensive resource to identify targets and monitor P. falciparum gametocytemia.


Assuntos
Perfilação da Expressão Gênica/métodos , Malária/imunologia , Plasmodium/fisiologia , Proteômica/métodos , Animais , Antígenos de Protozoários/genética , Antígenos de Protozoários/metabolismo , Teorema de Bayes , Bases de Dados Genéticas , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Imunidade Humoral , Malária/parasitologia , Plasmodium/imunologia , Análise Serial de Proteínas/métodos , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/metabolismo
10.
Elife ; 72018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29482720

RESUMO

Background: Malaria elimination strategies require a thorough understanding of parasite transmission from human to mosquito. A clinical model to induce gametocytes to understand their dynamics and evaluate transmission-blocking interventions (TBI) is currently unavailable. Here, we explore the use of the well-established Controlled Human Malaria Infection model (CHMI) to induce gametocyte carriage with different antimalarial drug regimens. Methods: In a single centre, open-label randomised trial, healthy malaria-naive participants (aged 18­35 years) were infected with Plasmodium falciparum by bites of infected Anopheles mosquitoes. Participants were randomly allocated to four different treatment arms (n = 4 per arm) comprising low-dose (LD) piperaquine (PIP) or sulfadoxine-pyrimethamine (SP), followed by a curative regimen upon recrudescence. Male and female gametocyte densities were determined by molecular assays. Results: Mature gametocytes were observed in all participants (16/16, 100%). Gametocytes appeared 8.5­12 days after the first detection of asexual parasites. Peak gametocyte densities and gametocyte burden was highest in the LD-PIP/SP arm, and associated with the preceding asexual parasite biomass (p=0.026). Male gametocytes had a mean estimated circulation time of 2.7 days (95% CI 1.5­3.9) compared to 5.1 days (95% CI 4.1­6.1) for female gametocytes. Exploratory mosquito feeding assays showed successful sporadic mosquito infections. There were no serious adverse events or significant differences in the occurrence and severity of adverse events between study arms (p=0.49 and p=0.28). Conclusions: The early appearance of gametocytes indicates gametocyte commitment during the first wave of asexual parasites emerging from the liver. Treatment by LD-PIP followed by a curative SP regimen, results in the highest gametocyte densities and the largest number of gametocyte-positive days. This model can be used to evaluate the effect of drugs and vaccines on gametocyte dynamics, and lays the foundation for fulfilling the critical unmet need to evaluate transmission-blocking interventions against falciparum malaria for downstream selection and clinical development. Funding: Funded by PATH Malaria Vaccine Initiative (MVI). Clinical trial number: NCT02836002.


The parasite that causes malaria, named Plasmodium falciparum, has a life cycle that involves both humans and mosquitoes. Starting in the saliva of female Anopheles mosquitoes, it enters a person's bloodstream when the insects feed. It then moves to the person's liver, where it infects liver cells and matures into a stage known as schizonts. The schizonts then divide to form thousands of so-called merozoites, which burst out of the liver cells and into the bloodstream. The merozoites infect red blood cells, producing more schizonts and yet more merozoites, which continue the infection. To complete its life cycle, the parasite must return to a mosquito. Some of the parasites in the person's blood transform into male and female cells called gametocytes that are taken up by a mosquito when it feeds on that person. Inside the mosquito, male and female parasites reproduce to create the next generation of parasites. The new parasites then move to the mosquito's salivary glands, ready to begin another infection. Stopping the parasite being transmitted from humans to mosquitoes will stop the spread of malaria in the population. Yet it has proven difficult to study this part of the life cycle from natural infections. Here, Reuling et al. report a new method for generating gametocytes in human volunteers that will enable closer study of the biology of malaria transmission. The method is developed using the Controlled Human Malaria Infection (CHMI) model. Healthy volunteers without a history of malaria are bitten by mosquitoes infected with malaria parasites. Shortly afterwards, the volunteers are given a drug treatment to control and reduce their symptoms. The gametocytes form during this phase of the infection. At the end of the experiment, all the volunteers receive a final treatment that completely cures the infection. Reuling et al. recruited 16 volunteers and assigned them to four groups at random. Each group received a different drug regime. Roughly a week after the mosquito bites, all participants showed malaria parasites in their blood, and between 8.5 and 12 days later, mature gametocytes started to appear. This early appearance suggests that the parasites start to transform into gametocytes when they first emerge from the liver. The experiment also revealed that female gametocytes stay in the blood for a longer period than their male counterparts. These results are proof of principle for a new way to investigate malaria infection. The new model provides a controlled method for studying P. falciparum gametocytes in people. In the future, it could help to test the impact of drugs and vaccines on gametocytes. Understanding more about these parasites' biology could lead to treatments that block malaria transmission.


Assuntos
Antimaláricos/administração & dosagem , Malária Falciparum/parasitologia , Carga Parasitária , Parasitemia/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Esporos de Protozoários/isolamento & purificação , Adolescente , Adulto , Animais , Anopheles/parasitologia , Antimaláricos/efeitos adversos , Transmissão de Doença Infecciosa , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Feminino , Humanos , Masculino , Adulto Jovem
11.
Elife ; 72018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29848446

RESUMO

Understanding the importance of gametocyte density on human-to-mosquito transmission is of immediate relevance to malaria control. Previous work (Churcher et al., 2013) indicated a complex relationship between gametocyte density and mosquito infection. Here we use data from 148 feeding experiments on naturally infected gametocyte carriers to show that the relationship is much simpler and depends on both female and male parasite density. The proportion of mosquitoes infected is primarily determined by the density of female gametocytes though transmission from low gametocyte densities may be impeded by a lack of male parasites. Improved precision of gametocyte quantification simplifies the shape of the relationship with infection increasing rapidly before plateauing at higher densities. The mean number of oocysts per mosquito rises quickly with gametocyte density but continues to increase across densities examined. The work highlights the importance of measuring both female and male gametocyte density when estimating the human reservoir of infection.


Assuntos
Anopheles/parasitologia , Células Germinativas/citologia , Malária Falciparum/parasitologia , Plasmodium falciparum/citologia , Caracteres Sexuais , Adolescente , Animais , Portador Sadio/parasitologia , Contagem de Células , Criança , Pré-Escolar , Comportamento Alimentar , Feminino , Humanos , Masculino , Oocistos/citologia , Razão de Masculinidade
12.
Nat Commun ; 9(1): 558, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29422648

RESUMO

Infection with Plasmodium can elicit antibodies that inhibit parasite survival in the mosquito, when they are ingested in an infectious blood meal. Here, we determine the transmission-reducing activity (TRA) of naturally acquired antibodies from 648 malaria-exposed individuals using lab-based mosquito-feeding assays. Transmission inhibition is significantly associated with antibody responses to Pfs48/45, Pfs230, and to 43 novel gametocyte proteins assessed by protein microarray. In field-based mosquito-feeding assays the likelihood and rate of mosquito infection are significantly lower for individuals reactive to Pfs48/45, Pfs230 or to combinations of the novel TRA-associated proteins. We also show that naturally acquired purified antibodies against key transmission-blocking epitopes of Pfs48/45 and Pfs230 are mechanistically involved in TRA, whereas sera depleted of these antibodies retain high-level, complement-independent TRA. Our analysis demonstrates that host antibody responses to gametocyte proteins are associated with reduced malaria transmission efficiency from humans to mosquitoes.


Assuntos
Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Plasmodium falciparum , Adulto , Idoso , Idoso de 80 Anos ou mais , Burkina Faso/epidemiologia , Camarões/epidemiologia , Estudos de Casos e Controles , Feminino , Gâmbia/epidemiologia , Humanos , Imunoglobulina G/sangue , Malária Falciparum/sangue , Masculino , Pessoa de Meia-Idade
13.
Nat Commun ; 9(1): 1498, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29643330

RESUMO

The original version of this Article contained errors in Fig. 3. In panel a, bars from a chart depicting the percentage of antibody-positive individuals in non-infectious and infectious groups were inadvertently included in place of bars depicting the percentage of infectious individuals, as described in the Article and figure legend. However, the p values reported in the Figure and the resulting conclusions were based on the correct dataset. The corrected Fig. 3a now shows the percentage of infectious individuals in antibody-negative and -positive groups, in both the PDF and HTML versions of the Article. The incorrect and correct versions of Figure 3a are also presented for comparison in the accompanying Publisher Correction as Figure 1.The HTML version of the Article also omitted a link to Supplementary Data 6. The error has now been fixed and Supplementary Data 6 is available to download.

14.
Parasit Vectors ; 10(1): 489, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-29041962

RESUMO

BACKGROUND: With the increasing interest in vaccines to interrupt malaria transmission, there is a demand for harmonization of current methods to assess Plasmodium transmission in laboratory settings. Potential vaccine candidates are currently tested in the standard membrane feeding assay (SMFA) that commonly relies on Anopheles stephensi mosquitoes. Other mosquito species including Anopheles gambiae are the dominant malaria vectors for Plasmodium falciparum in sub-Saharan Africa. METHODS: Using human serum and monoclonal pre-fertilization (anti-Pfs48/45) and post-fertilization (anti-Pfs25) antibodies known to effectively inhibit sporogony, we directly compared SMFA based estimates of transmission-reducing activity (TRA) for An. stephensi and An. gambiae mosquitoes. RESULTS: In the absence of transmission-reducing antibodies, average numbers of oocysts were similar between An. gambiae and An. stephensi. Antibody-mediated TRA was strongly correlated between both mosquito species, and absolute TRA estimates for pre-fertilisation monoclonal antibodies (mAb) showed no significant difference between the two species. TRA estimates for IgG of naturally exposed individuals and partially effective concentrations of anti-Pfs25 mAb were higher for An. stephensi than for An. gambiae. CONCLUSION: Our findings support the use of An. stephensi in the SMFA for target prioritization. As a vaccine moves through product development, better estimates of TRA and transmission-blocking activity (TBA) may need to be obtained in epidemiologically relevant parasite-species combination.


Assuntos
Anopheles/parasitologia , Anticorpos Monoclonais/imunologia , Anticorpos Antiprotozoários/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/transmissão , Plasmodium falciparum/fisiologia , Animais , Anopheles/fisiologia , Humanos , Imunidade , Malária Falciparum/parasitologia , Oocistos
15.
Sci Rep ; 6: 20440, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26861587

RESUMO

Anopheles gambiae s.s. mosquitoes are efficient vectors for Plasmodium falciparum, although variation exists in their susceptibility to infection. This variation depends partly on the thioester-containing protein 1 (TEP1) and TEP depletion results in significantly elevated numbers of oocysts in susceptible and resistant mosquitoes. Polymorphism in the Plasmodium gene coding for the surface protein Pfs47 modulates resistance of some parasite laboratory strains to TEP1-mediated killing. Here, we examined resistance of P. falciparum isolates of African origin (NF54, NF165 and NF166) to TEP1-mediated killing in a susceptible Ngousso and a refractory L3-5 strain of A. gambiae. All parasite clones successfully developed in susceptible mosquitoes with limited evidence for an impact of TEP1 on transmission efficiency. In contrast, NF166 and NF165 oocyst densities were strongly reduced in refractory mosquitoes and TEP1 silencing significantly increased oocyst densities. Our results reveal differences between African P. falciparum strains in their capacity to evade TEP1-mediated killing in resistant mosquitoes. There was no significant correlation between Pfs47 genotype and resistance of a given P. falciparum isolate for TEP1 killing. These data suggest that polymorphisms in this locus are not the sole mediators of immune evasion of African malaria parasites.


Assuntos
Anopheles/metabolismo , Proteínas de Insetos/metabolismo , Plasmodium falciparum/fisiologia , Animais , Anopheles/crescimento & desenvolvimento , Anopheles/parasitologia , Suscetibilidade a Doenças , Inativação Gênica , Immunoblotting , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/deficiência , Insetos Vetores/parasitologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Mutação de Sentido Incorreto , Oocistos/metabolismo , Oocistos/parasitologia , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Análise de Sequência de DNA
16.
Sci Rep ; 3: 3418, 2013 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-24301557

RESUMO

Mosquito feeding assays are important in evaluations of malaria transmission-reducing interventions. The proportion of mosquitoes with midgut oocysts is commonly used as an outcome measure, but in natural low intensity infections the effect of oocyst non-rupture on mosquito infectivity is unclear. By identifying ruptured as well as intact oocysts, we show that in low intensity P. falciparum infections i) 66.7-96.7% of infected mosquitoes experienced oocyst rupture between 11-21 days post-infection, ii) oocyst rupture led invariably to sporozoite release, iii) oocyst rupture led to salivary gland infections in 97.8% of mosquitoes, and iv) 1250 (IQR 313-2400) salivary gland sporozoites were found per ruptured oocyst. These data show that infectivity can be predicted with reasonable certainty from oocyst prevalence in low intensity infections. High throughput methods for detecting infection in whole mosquitoes showed that 18s PCR but not circumsporozoite ELISA gave a reliable approximation of mosquito infection rates on day 7 post-infection.


Assuntos
Culicidae/fisiologia , Culicidae/parasitologia , Oocistos/fisiologia , Oocistos/parasitologia , Esporozoítos/fisiologia , Animais , Feminino , Insetos Vetores/parasitologia , Insetos Vetores/fisiologia , Malária/parasitologia , Plasmodium falciparum , Prevalência , Glândulas Salivares/parasitologia , Glândulas Salivares/fisiologia , Esporozoítos/parasitologia
17.
Int J Parasitol ; 40(10): 1221-8, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20515695

RESUMO

Sulfadoxine-pyrimethamine (SP) is currently the drug of choice for intermittent preventive treatment of Plasmodium falciparum both in pregnancy and infancy. A prolonged parasite clearance time conferred by dhfr and dhps mutations is believed to be responsible for increased gametocyte prevalence in SP treated individuals. However, using a direct feeding assay in Mali, we showed that gametocytes present in peripheral venous blood post-SP treatment had reduced infectivity for Anopheles gambiae sensu stricto (ss) mosquitoes. We investigated the potential mechanisms involved in the dhfr and dhps quintuple mutant NF-135 and the single dhps 437 mutant NF-54. Concentrations of sulfadoxine (S) and pyrimethamine (P) equivalent to the serum levels of the respective drugs on day 3 (S=61 microg/ml, P=154.7 ng/ml) day 7 (S=33.8 microg/ml, P=66.6 ng/ml) and day 14 (S=14.2 microg/ml, P=15.7 ng/ml) post-SP treatment were used to study the effect on gametocytogenesis, gametocyte maturation and infectivity to Anopheles stephensi mosquitoes fed through an artificial membrane. The drugs readily induced gametocytogenesis in the mutant NF-135 strain but effectively killed the wild-type NF-54. However, both drugs impaired gametocyte maturation yielding odd-shaped non-exflagellating mature gametocytes. The concomitant ingestion of both S and P together with gametocytemic blood-meal significantly reduced the prevalence of oocyst positivity as well as oocyst density when compared to controls (P<0.001). In addition, day 3 concentrations of SP decreased mosquito survival by up to 65% (P<0.001). This study demonstrates that SP is deleterious in vitro for gametocyte infectivity as well as mosquito survival.


Assuntos
Anopheles/efeitos dos fármacos , Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Pirimetamina/farmacologia , Sulfadoxina/farmacologia , Animais , Di-Hidropteroato Sintase/genética , Di-Hidropteroato Sintase/metabolismo , Combinação de Medicamentos , Resistência a Medicamentos , Genótipo , Interações Hospedeiro-Parasita , Mutação , Plasmodium falciparum/genética , Plasmodium falciparum/parasitologia , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA