Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(45): e2211853120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37903268

RESUMO

Previous work indicates that tropical forest can exist as an alternative stable state to savanna. Therefore, perturbation by climate change or human impact may lead to crossing of a tipping point beyond which there is rapid forest dieback that is not easily reversed. A hypothesized mechanism for such bistability is feedback between fire and vegetation, where fire spreads as a contagion process on grass patches. Theoretical models have largely implemented this mechanism implicitly, by assuming a threshold dependence of fire spread on flammable vegetation. Here, we show how the nonlinear dynamics and bistability emerge spontaneously, without assuming equations or thresholds for fire spread. We find that the forest geometry causes the nonlinearity that induces bistability. We demonstrate this in three steps. First, we model forest and fire as interacting contagion processes on grass patches, showing that spatial structure emerges due to two counteracting effects on the forest perimeter: forest expansion by dispersal and forest erosion by fires originating in adjacent grassland. Then, we derive a landscape-scale balance equation in which these two effects link forest geometry and dynamics: Forest expands proportionally to its perimeter, while it shrinks proportionally to its perimeter weighted by adjacent grassland area. Finally, we show that these perimeter quantities introduce nonlinearity in our balance equation and lead to bistability. Relying on the link between structure and dynamics, we propose a forest resilience indicator that could be used for targeted conservation or restoration.

2.
Phys Rev Lett ; 123(5): 053901, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31491298

RESUMO

Localized states are a universal phenomenon observed in spatially distributed dissipative nonlinear systems. Known as dissipative solitons, autosolitons, and spot or pulse solutions, these states play an important role in data transmission using optical pulses, neural signal propagation, and other processes. While this phenomenon was thoroughly studied in spatially extended systems, temporally localized states are gaining attention only recently, driven primarily by applications from fiber or semiconductor lasers. Here we present a theory for temporal dissipative solitons (TDS) in systems with time-delayed feedback. In particular, we derive a system with an advanced argument, which determines the profile of the TDS. We also provide a complete classification of the spectrum of TDS into interface and pseudocontinuous spectrum. We illustrate our theory with two examples: a generic delayed phase oscillator, which is a reduced model for an injected laser with feedback, and the FitzHugh-Nagumo neuron with delayed feedback. Finally, we discuss possible destabilization mechanisms of TDS and show an example where the TDS delocalizes and its pseudocontinuous spectrum develops a modulational instability.

3.
Chaos ; 27(11): 114326, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29195334

RESUMO

A common task when analysing dynamical systems is the determination of normal forms near local bifurcations of equilibria. As most of these normal forms have been classified and analysed, finding which particular class of normal form one encounters in a numerical bifurcation study guides follow-up computations. This paper builds on normal form algorithms for equilibria of delay differential equations with constant delay that were developed and implemented in DDE-Biftool recently. We show how one can extend these methods to delay-differential equations with state-dependent delay (sd-DDEs). Since higher degrees of regularity of local center manifolds are still open for sd-DDEs, we give an independent (still only partial) argument which phenomena from the truncated normal must persist in the full sd-DDE. In particular, we show that all invariant manifolds with a sufficient degree of normal hyperbolicity predicted by the normal form exist also in the full sd-DDE.

4.
Chaos ; 26(9): 093116, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27781451

RESUMO

A dynamical system is said to undergo rate-induced tipping when it fails to track its quasi-equilibrium state due to an above-critical-rate change of system parameters. We study a prototypical model for rate-induced tipping, the saddle-node normal form subject to time-varying equilibrium drift and noise. We find that both most commonly used early-warning indicators, increase in variance and increase in autocorrelation, occur not when the equilibrium drift is fastest but with a delay. We explain this delay by demonstrating that the most likely trajectory for tipping also crosses the tipping threshold with a delay, and therefore, the tipping itself is delayed. We find solutions of the variational problem determining the most likely tipping path using numerical continuation techniques. The result is a systematic study of the most likely tipping time in the plane of two parameters, distance from tipping threshold and noise intensity.

5.
Chaos ; 25(5): 053113, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26026325

RESUMO

We study a system of phase oscillators with nonlocal coupling in a ring that supports self-organized patterns of coherence and incoherence, called chimera states. Introducing a global feedback loop, connecting the phase lag to the order parameter, we can observe chimera states also for systems with a small number of oscillators. Numerical simulations show a huge variety of regular and irregular patterns composed of localized phase slipping events of single oscillators. Using methods of classical finite dimensional chaos and bifurcation theory, we can identify the emergence of chaotic chimera states as a result of transitions to chaos via period doubling cascades, torus breakup, and intermittency. We can explain the observed phenomena by a mechanism of self-modulated excitability in a discrete excitable medium.

6.
Phys Rev Lett ; 112(5): 054102, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24580597

RESUMO

We present a control scheme that is able to find and stabilize an unstable chaotic regime in a system with a large number of interacting particles. This allows us to track a high dimensional chaotic attractor through a bifurcation where it loses its attractivity. Similar to classical delayed feedback control, the scheme is noninvasive, however only in an appropriately relaxed sense considering the chaotic regime as a statistical equilibrium displaying random fluctuations as a finite size effect. We demonstrate the control scheme for so-called chimera states, which are coherence-incoherence patterns in coupled oscillator systems. The control makes chimera states observable close to coherence, for small numbers of oscillators, and for random initial conditions.

7.
Bioprocess Biosyst Eng ; 36(10): 1497-507, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23397450

RESUMO

We propose an adaptive control law that allows one to identify unstable steady states of the open-loop system in the single-species chemostat model without the knowledge of the growth function. We then show how one can use this control law to trace out (reconstruct) the whole graph of the growth function. The process of tracing out the graph can be performed either continuously or step-wise. We present and compare both approaches. Even in the case of two species in competition, which is not directly accessible with our approach due to lack of controllability, feedback control improves identifiability of the non-dominant growth rate.


Assuntos
Modelos Teóricos , Retroalimentação
8.
Phys Rev E ; 106(5-1): 054312, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36559403

RESUMO

In the study of dynamics on networks, moment closure is a commonly used method to obtain low-dimensional evolution equations amenable to analysis. The variables in the evolution equations are mean counts of subgraph states and are referred to as moments. Due to interaction between neighbors, each moment equation is a function of higher-order moments, such that an infinite hierarchy of equations arises. Hence, the derivation requires truncation at a given order and an approximation of the highest-order moments in terms of lower-order ones, known as a closure formula. Recent systematic approximations have either restricted focus to closed moment equations for SIR epidemic spreading or to unclosed moment equations for arbitrary dynamics. In this paper, we develop a general procedure that automates both derivation and closure of arbitrary order moment equations for dynamics with nearest-neighbor interactions on undirected networks. Automation of the closure step was made possible by our generalized closure scheme, which systematically decomposes the largest subgraphs into their smaller components. We show that this decomposition is exact if these components form a tree, there is independence at distances beyond their graph diameter, and there is spatial homogeneity. Testing our method for SIS epidemic spreading on lattices and random networks confirms that biases are larger for networks with many short cycles in regimes with long-range dependence. A Mathematica package that automates the moment closure is available for download.

9.
Proc Math Phys Eng Sci ; 475(2222): 20180504, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30853839

RESUMO

A classical scenario for tipping is that a dynamical system experiences a slow parameter drift across a fold tipping point, caused by a run-away positive feedback loop. We study what happens if one turns around after one has crossed the threshold. We derive a simple criterion that relates how far the parameter exceeds the tipping threshold maximally and how long the parameter stays above the threshold to avoid tipping in an inverse-square law to observable properties of the dynamical system near the fold. For the case when the dynamical system is subject to stochastic forcing we give an approximation to the probability of tipping if a parameter changing in time reverses near the tipping point. The derived approximations are valid if the parameter change in time is sufficiently slow. We demonstrate for a higher-dimensional system, a model for the Indian summer monsoon, how numerically observed escape from the equilibrium converge to our asymptotic expressions. The inverse-square law between peak of the parameter forcing and the time the parameter spends above a given threshold is also visible in the level curves of equal probability when the system is subject to random disturbances.

10.
Proc Math Phys Eng Sci ; 475(2223): 20180884, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31007559

RESUMO

Dynamic buckling is addressed for complete elastic spherical shells subject to a rapidly applied step in external pressure. Insights from the perspective of nonlinear dynamics reveal essential mathematical features of the buckling phenomena. To capture the strong buckling imperfection-sensitivity, initial geometric imperfections in the form of an axisymmetric dimple at each pole are introduced. Dynamic buckling under the step pressure is related to the quasi-static buckling pressure. Both loadings produce catastrophic collapse of the shell for conditions in which the pressure is prescribed. Damping plays an important role in dynamic buckling because of the time-dependent nonlinear interaction among modes, particularly the interaction between the spherically symmetric 'breathing' mode and the buckling mode. In general, there is not a unique step pressure threshold separating responses associated with buckling from those that do not buckle. Instead, there exists a cascade of buckling thresholds, dependent on the damping and level of imperfection, separating pressures for which buckling occurs from those for which it does not occur. For shells with small and moderately small imperfections, the dynamic step buckling pressure can be substantially below the quasi-static buckling pressure.

11.
Proc Math Phys Eng Sci ; 475(2227): 20190075, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31423091

RESUMO

Models incorporating delay have been frequently used to understand climate variability phenomena, but often the delay is introduced through an ad hoc physical reasoning, such as the propagation time of waves. In this paper, the Mori-Zwanzig formalism is introduced as a way to systematically derive delay models from systems of partial differential equations and hence provides a better justification for using these delay-type models. The Mori-Zwanzig technique gives a formal rewriting of the system using a projection onto a set of resolved variables, where the rewritten system contains a memory term. The computation of this memory term requires solving the orthogonal dynamics equation, which represents the unresolved dynamics. For nonlinear systems, it is often not possible to obtain an analytical solution to the orthogonal dynamics and an approximate solution needs to be found. Here, we demonstrate the Mori-Zwanzig technique for a two-strip model of the El Niño Southern Oscillation (ENSO) and explore methods to solve the orthogonal dynamics. The resulting nonlinear delay model contains an additional term compared to previously proposed ad hoc conceptual models. This new term leads to a larger ENSO period, which is closer to that seen in observations.

12.
Phys Rev E ; 95(5-1): 052209, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28618548

RESUMO

We propose an approximation for the probability of tipping when the speed of parameter change and additive white noise interact to cause tipping. Our approximation is valid for small to moderate drift speeds and helps to estimate the probability of false positives and false negatives in early-warning indicators in the case of rate- and noise-induced tipping. We illustrate our approximation on a prototypical model for rate-induced tipping with additive noise using Monte Carlo simulations. The formula can be extended to close encounters of rate-induced tipping and is otherwise applicable to other forms of tipping. We also provide an asymptotic formula for the critical ramp speed of the parameter in the absence of noise for a general class of systems undergoing rate-induced tipping.

13.
Proc Math Phys Eng Sci ; 470(2169): 20140348, 2014 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25197254

RESUMO

Models of global climate phenomena of low to intermediate complexity are very useful for providing an understanding at a conceptual level. An important aspect of such models is the presence of a number of feedback loops that feature considerable delay times, usually due to the time it takes to transport energy (for example, in the form of hot/cold air or water) around the globe. In this paper, we demonstrate how one can perform a bifurcation analysis of the behaviour of a periodically forced system with delay in dependence on key parameters. As an example, we consider the El-Niño Southern Oscillation (ENSO), which is a sea-surface temperature (SST) oscillation on a multi-year scale in the basin of the Pacific Ocean. One can think of ENSO as being generated by an interplay between two feedback effects, one positive and one negative, which act only after some delay that is determined by the speed of transport of SST anomalies across the Pacific. We perform here a case study of a simple delayed-feedback oscillator model for ENSO, which is parametrically forced by annual variation. More specifically, we use numerical bifurcation analysis tools to explore directly regions of delay-induced resonances and other stability boundaries in this delay-differential equation model for ENSO.

14.
Philos Trans A Math Phys Eng Sci ; 370(1962): 1007-11, 2012 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-22291220

RESUMO

The current threat of global warming and the public demand for confident projections of climate change pose the ultimate challenge to science: predicting the future behaviour of a system of such overwhelming complexity as the Earth's climate. This Theme Issue addresses two practical problems that make even prediction of the statistical properties of the climate, when treated as the attractor of a chaotic system (the weather), so challenging. The first is that even for the most detailed models, these statistical properties of the attractor show systematic biases. The second is that the attractor may undergo sudden large-scale changes on a time scale that is fast compared with the gradual change of the forcing (the so-called climate tipping).

15.
Philos Trans A Math Phys Eng Sci ; 370(1962): 1205-27, 2012 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-22291230

RESUMO

Approaching a dangerous bifurcation, from which a dynamical system such as the Earth's climate will jump (tip) to a different state, the current stable state lies within a shrinking basin of attraction. Persistence of the state becomes increasingly precarious in the presence of noisy disturbances. We argue that one needs to extract information about the nonlinear features (a 'softening') of the underlying potential from the time series to judge the probability and timing of tipping. This analysis is the logical next step if one has detected a decrease of the linear decay rate. If there is no discernible trend in the linear analysis, nonlinear softening is even more important in showing the proximity to tipping. After extensive normal-form calibration studies, we check two geological time series from palaeo-climate tipping events for softening of the underlying well. For the ending of the last ice age, where we find no convincing linear precursor, we identify a statistically significant nonlinear softening towards increasing temperature.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(1 Pt 2): 016227, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21867293

RESUMO

We study a chain of N+1 phase oscillators with asymmetric but uniform coupling. This type of chain possesses 2(N) ways to synchronize in so-called traveling wave states, i.e., states where the phases of the single oscillators are in relative equilibrium. We show that the number of unstable dimensions of a traveling wave equals the number of oscillators with relative phase close to π. This implies that only the relative equilibrium corresponding to approximate in-phase synchronization is locally stable. Despite the presence of a Lyapunov-type functional, periodic or chaotic phase slipping occurs. For chains of lengths 3 and 4 we locate the region in parameter space where rotations (corresponding to phase slipping) are present.


Assuntos
Modelos Teóricos , Rotação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA