Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
New Phytol ; 238(6): 2594-2606, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36918476

RESUMO

Secondary invasions in which nontarget invaders expand following eradication of a target invader commonly occur in habitats with multiple invasive plant species and can prevent recovery of native communities. However, the dynamics and mechanisms of secondary invasion remain unclear. Here, we conducted a common garden experiment to test underlying mechanisms of secondary invasion for 14 nontarget invaders after biological control of Ambrosia artemisiifolia in two consecutive years. We found secondary invasion for all tested nontarget invaders, but secondary invasiveness (change relative to natives) varied with species and time. Specifically, secondary invasiveness depended most strongly on phylogenetic relatedness between the target and nontarget invaders in the first year with closely related nontarget invaders being most invasive. By contrast, secondary invasiveness in the second year was mostly driven by functional traits with taller nontarget invaders or those with higher specific leaf area, or smaller seeds especially invasive. Our study indicates that secondary invasion is likely to occur wherever other invasive plants co-occur with an invasive species targeted for control. Furthermore, the most problematic invaders will initially be species closely related to the target invader but then species with rapid growth and high reproduction are most likely to be more aggressive secondary invaders.


Assuntos
Ecossistema , Plantas , Filogenia , Espécies Introduzidas , Sementes
2.
Ecol Appl ; : e2805, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36583667

RESUMO

Temporal fluctuation in nutrient availability generally promotes the growth of exotic plant species and has been recognized as an important driver of exotic plant invasions. However, little is known about how the impact of fluctuating nutrients on exotic species is dependent on the availability of other resources, although most ecosystems are experiencing dramatic variations in a wide variety of resources due to global change and human disturbance. Here, we explored how water availability mediates the effect of nutrient pulses on the growth of six exotic and six native plant species. We subjected individual plants of exotic and native species to well watered or water stressed conditions. For each level of water availability, we added equivalent amounts of nutrients at a constant rate, as a single large pulse, or in multiple small pulses. Under well watered conditions, nutrient pulses promoted exotic plant growth relative to nutrients supplied constantly, while they had no significant effect on natives. In contrast, under water stressed conditions, water deficiency inhibited the growth of all exotic and native species. More importantly, nutrient pulses did not increase plant growth relative to nutrients supplied constantly and these phenomena were observed for both exotic and native species. Taken together, our study shows that the impact of fluctuating nutrient availability on the growth of exotic plant species strongly depends on the variation of other resources, and that the positive effect of nutrient pulses under well watered conditions disappears under water stressed conditions. Our findings suggest that the variation in multiple resources may have complex feedback on exotic plant invasions and, therefore, it is critical to encompass multiple resources for the evaluation of fluctuating resource availability effects on exotic plant species. This will allow us to project the invasive trajectory of exotic plant species more accurately under future global change and human disturbance.

3.
Ecol Appl ; : e2740, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36102220

RESUMO

Plant invasions profoundly impact both natural and managed ecosystems, and removal of the invasive plants addresses only part of the problem of restoring impacted areas. The rehabilitation of diverse communities and their ecosystem functions following removal of invasive plants is an important goal of ecological restoration. Arthropod assemblages and trophic interactions are important indicators of the success of restoration, but they have largely been overlooked in saltmarshes. We determined how arthropod assemblages and trophic interactions changed with the invasion of the exotic plant Spartina alterniflora and with the restoration of the native plant Phragmites australis following Spartina removal in a Chinese saltmarsh. We investigated multiple biotic and abiotic variables to gain insight into the factors underlying the changes in arthropod assemblages and trophic structure. We found that although Spartina invasion had changed arthropod diversity, community structure, feeding-guild composition, and the diets of arthropod natural enemies in the saltmarsh, these changes could be reversed by the restoration of native Phragmites vegetation following removal of the invader. The variation in arthropod assemblages and trophic structure were critically associated with four biotic and abiotic variables (aboveground biomass, plant density, leaf N, and soil salinity). Our findings demonstrate the positive effects of controlling invasive plants on biodiversity and nutrient cycling and provide a foundation for assessing the efficacy of ecological restoration projects in saltmarshes.

4.
Ecol Appl ; : e2795, 2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36502292

RESUMO

Fluctuating resource availability plays a critical role in determining non-native plant invasions through mediating the competitive balance between non-native and native species. However, the impact of fluctuating resource availability on interactions among non-native species remains largely unknown. This represents a barrier to understanding invasion mechanisms, particularly in habitats that harbor multiple non-native species with different responses to fluctuating resource availability. To examine the responses of non-native plant species to nutrient fluctuations, we compared the growth of each of 12 non-native species found to be common in local natural areas to nutrients supplied at a constant rate or supplied as a single large pulse in a pot experiment. We found that seven species produced more biomass with pulsed nutrients compared to constant nutrients (hereafter "benefitting species"), while the other five species did not differ between nutrient enrichment treatments (hereafter "non-benefitting species"). To investigate how nutrient fluctuations influence the interactions among non-native plant species, we established experimental non-native communities in the field with two benefitting and two non-benefitting non-native species. Compared with constant nutrient supply, the single large pulse of nutrient did not influence community biomass, but strongly increased the biomass and cover of the benefitting species and decreased those of the non-benefitting species. Furthermore, the benefitting species had higher leaf N content and greater plant height when nutrients were supplied as a single large pulse than at a constant rate, whereas the non-benefitting species showed no differences in leaf N content and were shorter when nutrients were supplied as a single large pulse than at a constant rate. Our results add to the growing evidence that the individual responses of non-native species to nutrient fluctuation are species-specific. More importantly, benefitting species were favored by nutrients coming in a pulse, while non-benefitting ones were favored by nutrients coming constantly when they grew together. This suggests that nutrient fluctuations can mediate the competitive balance among non-native plants and may thus determine their invasion success in a community harboring multiple non-native plant species.

5.
New Phytol ; 231(4): 1559-1569, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34018617

RESUMO

Climate and plant invasion can shape biotic communities at large spatial scales. Yet, how diverse groups of organisms associated with an invasive plant change simultaneously with latitude and the roles of climate and plant invasion remains unclear. We conducted a field survey of plants (native vs exotic), soil fungi (pathogenic, saprotrophic, arbuscular mycorrhiza fungi (AMF) and ectomycorrhizal (EcM) fungi) and arthropods (herbivores, predators and detritivores) associated with the invasive plant Alternanthera philoxeroides at 49 sites spanning 14 latitudinal degrees in China. Results showed that diversity and composition of these functional groups changed differently with latitude, partially due to their specific responses to climate, invasion of A. philoxeroides and other biotic environments. Moreover, A. philoxeroides invasion and/or composition of other plants, rather than climate, predicted the diversity and richness of major functional groups and partly explained variance in composition of putative fungal pathogens. Our results suggest that climate and plant invasion could affect the diversity and composition of diverse groups of organisms simultaneously and their relative importance might vary among functional groups. Thus, it is necessary to explore latitudinal patterns and underlying drivers of diverse groups of organisms simultaneously to improve our ability to predict and mitigate threats posed by plant invasion and climate change.


Assuntos
Biodiversidade , Plantas , China , Solo , Microbiologia do Solo
6.
Ann Bot ; 127(3): 327-336, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33159517

RESUMO

BACKGROUND AND AIMS: Plant invasions can change soil microbial communities and affect subsequent invasions directly or indirectly via foliar herbivory. It has been proposed that invaders promote uniform biotic communities that displace diverse, spatially variable communities (the biotic homogenization hypothesis), but this has not been experimentally tested for soil microbial communities, so the underlying mechanisms and dynamics are unclear. Here, we compared density-dependent impacts of the invasive plant Alternanthera philoxeroides and its native congener A. sessilis on soil fungal communities, and their feedback effects on plants and a foliar beetle. METHODS: We conducted a plant-soil feedback (PSF) experiment and a laboratory bioassay to examine PSFs associated with the native and invasive plants and a beetle feeding on them. We also characterized the soil fungal community using high-throughput sequencing. KEY RESULTS: We found locally differentiated soil fungal pathogen assemblages associated with high densities of the native plant A. sessilis but little variation in those associated with the invasive congener A. philoxeroides, regardless of plant density. In contrast, arbuscular mycorrhizal fungal assemblages associated with high densities of the invasive plant were more variable. Soil biota decreased plant shoot mass but their effect was weak for the invasive plant growing in native plant-conditioned soils. PSFs increased the larval biomass of a beetle reared on leaves of the native plant only. Moreover, PSFs on plant shoot and root mass and beetle mass were predicted by different pathogen taxa in a plant species-specific manner. CONCLUSION: Our results suggest that plant invasions can rapidly increase the similarity of soil pathogen assemblages even at low plant densities, leading to taxonomically and functionally homogeneous soil communities that may limit negative soil effects on invasive plants.


Assuntos
Amaranthaceae , Micobioma , Animais , Herbivoria , Plantas , Solo , Microbiologia do Solo
7.
Ann Bot ; 124(5): 819-827, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31318017

RESUMO

BACKGROUND AND AIMS: The strengths of biotic interactions such as herbivory are expected to decrease with increasing latitude for native species. To what extent this applies to invasive species and what the consequences of this variation are for competition among native and invasive species remain unexplored. Here, herbivore impacts on the invasive plant Alternanthera philoxeroides and its competition with the native congener A. sessilis were estimated across latitudes in China. METHODS: An common garden experiment spanning ten latitudinal degrees was conducted to test how herbivore impacts on A. philoxeroides and A. sessilis, and competition between them change with latitude. In addition, a field survey was conducted from 21°N to 36.8°N to test whether A. philoxeroides invasiveness changes with latitude in nature as a result of variations in herbivory. KEY RESULTS: In the experiment, A. sessilis cover was significantly higher than A. philoxeroides cover when they competed in the absence of herbivores, but otherwise their cover was comparable at low latitude. However, A. philoxeroides cover was always higher on average than A. sessilis cover at middle latitude. At high latitude, only A. sessilis emerged in the second year. Herbivore abundance decreased with latitude and A. philoxeroides emerged earlier than A. sessilis at middle latitude. In the field survey, the ratio of A. philoxeroides to A. sessilis cover was hump shaped with latitude. CONCLUSION: These results indicate that herbivory may promote A. philoxeroides invasion only at low latitude by altering the outcome of competition in favour of the invader and point to the importance of other factors, such as earlier emergence, in A. philoxeroides invasion at higher latitudes. These results suggest that the key factors promoting plant invasions might change with latitude, highlighting the importance of teasing apart the roles of multiple factors in plant invasions within a biogeographic framework.


Assuntos
Amaranthaceae , Herbivoria , China , Espécies Introduzidas , Plantas
8.
Microb Ecol ; 77(2): 537-545, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30613848

RESUMO

It has been proposed that holobionts (host-symbiont units) could swap endosymbionts, rapidly alter the hologenome (host plus symbiont genome), and increase their stress tolerance. However, experimental tests of individual and combined contributions of hosts and endosymbionts to holobiont stress tolerance are needed to test this hypothesis. Here, we used six green hydra (Hydra viridissima) strains to tease apart host (hydra) and symbiont (algae) contributions to thermal tolerance. Heat shock experiments with (1) hydra with their original symbionts, (2) aposymbiotic hydra (algae removed), (3) novel associations (a single hydra strain hosting different algae individually), and (4) control hydra (aposymbiotic hydra re-associated with their original algae) showed high variation in thermal tolerance in each group. Relative tolerances of strains were the same within original, aposymbiotic, and control treatments, but reversed in the novel associations group. Aposymbiotic hydra had similar or higher thermal tolerance than hydra with algal symbionts. Selection on the holobiont appears to be stronger than on either partner alone, suggesting endosymbiosis could become an evolutionary trap under climate change. Our results suggest that green hydra thermal tolerance is strongly determined by the host, with a smaller, non-positive role for the algal symbiont. Once temperatures exceed host tolerance limits, swapping symbionts is unlikely to allow these holobionts to persist. Rather, increases in host tolerance through in situ adaptation or migration of pre-adapted host strains appear more likely to increase local thermal tolerance. Overall, our results indicate green hydra is a valuable system for studying aquatic endosymbiosis under changing environmental conditions, and demonstrate how the host and the endosymbiont contribute to holobiont stress tolerance.


Assuntos
Clorófitas/fisiologia , Hydra/parasitologia , Simbiose , Animais , Água Doce/química , Água Doce/parasitologia , Temperatura Alta , Hydra/fisiologia , Estresse Fisiológico
9.
New Phytol ; 211(4): 1371-81, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27094757

RESUMO

Climate warming may affect biological invasions by altering competition between native and non-native species, but these effects may depend on biotic interactions. In field surveys at 33 sites in China along a latitudinal and temperature gradient from 21°N to 30.5°N and a 2-yr field experiment at 30.5°N, we tested the role of the biocontrol beetle Agasicles hygrophila in mediating warming effects on competition between the invasive plant Alternanthera philoxeroides and the native plant Alternanthera sessilis. In surveys, native populations were perennial below 25.8°N but only annual populations were found above 26.5°N where the invader dominated the community. Beetles were present throughout the gradient. Experimental warming (+ 1.8°C) increased native plant performance directly by shifting its lifecycle from annual to perennial, and indirectly by releasing the native from competition via disproportionate increases in herbivory on the invader. Consequently, warming shifted the plant community from invader-dominated to native-dominated but only in the presence of the beetle. Our results show that herbivores can play a critical role in determining warming effects on plant communities and species invasions. Understanding how biotic interactions shape responses of communities to climate change is crucial for predicting the risk of plant invasions.


Assuntos
Amaranthaceae/fisiologia , Mudança Climática , Besouros/fisiologia , Espécies Introduzidas , Controle Biológico de Vetores , Animais , Biomassa , Germinação , Modelos Biológicos , Caules de Planta/anatomia & histologia , Análise de Regressão , Plântula/fisiologia , Sementes/fisiologia , Especificidade da Espécie
10.
Ecol Appl ; 26(7): 2060-2071, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27755734

RESUMO

Plant competition may mediate the impacts of herbivory on invasive plant species through effects on plant growth and defense. This may predictably depend on whether herbivory occurs above or below ground and on relative plant competitive ability. We simulated the potential impact of above- or belowground damage by biocontrol agents on the growth of a woody invader (Chinese tallow tree, Triadica sebifera) through artificial herbivory, with or without competition with a native grass, little bluestem (Schizachyrium scoparium). We measured two defense responses of Triadica through quantifying constitutive and induced extrafloral nectar production and tolerance of above- and belowground damage (root and shoot biomass regrowth). We examined genetic variation in plant growth and defense across native (China) and invasive (United States) Triadica populations. Without competition, aboveground damage had a greater impact than belowground damage on Triadica performance, whereas with competition and above- and belowground damage impacted Triadica similarly. Whole plant tolerance to damage below ground was negatively associated with tolerance to grass competitors indicating tradeoffs in the ability to tolerate herbivory vs. compete. Competition reduced investment in defensive extrafloral nectar (EFN) production. Aboveground damage inhibited rather than induced EFN production while belowground plant damage did not impact aboveground nectar production. We found some support for the evolution of increased competitive ability hypothesis for invasive plants as United States plants were larger than native China plants and were more plastic in their response to biotic stressors than China plants (they altered their root to shoot ratios dependent on herbivory and competition treatments). Our results indicate that habitat type and the presence of competitors may be a larger determinant of herbivory impact than feeding mode and suggest that integrated pest management strategies including competitive dynamics of recipient communities should be incorporated into biological control agent evaluation at earlier stages.


Assuntos
Ecossistema , Euphorbiaceae/fisiologia , Espécies Introduzidas , Poaceae/fisiologia , Animais , China , Besouros/fisiologia , Herbivoria , Componentes Aéreos da Planta , Raízes de Plantas , Plântula , Árvores , Estados Unidos
11.
Oecologia ; 182(4): 1107-1115, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27623939

RESUMO

Spatially separated aboveground (AG) and belowground (BG) herbivores are closely linked through shared host plants, and both patterns of AG-BG interactions and plant responses may vary among plant genotypes. We subjected invasive (USA) and native (China) genotypes of tallow tree (Triadica sebifera) to herbivory by the AG specialist leaf-rolling weevil Heterapoderopsis bicallosicollis and/or the root-feeding larvae of flea beetle Bikasha collaris. We measured leaf damage and leaves rolled by weevils, quantified beetle survival, and analyzed flavonoid and tannin concentrations in leaves and roots. AG and BG herbivores formed negative feedbacks on both native and invasive genotypes. Leaf damage by weevils and the number of beetle larvae emerging as adults were higher on invasive genotypes. Beetles reduced weevil damage and weevils reduced beetle larval emergence more strongly for invasive genotypes. Invasive genotypes had lower leaf and root tannins than native genotypes. BG beetles decreased leaf tannins of native genotypes but increased root tannins of invasive genotypes. AG herbivory increased root flavonoids of invasive genotypes while BG herbivory decreased leaf flavonoids. Invasive genotypes had lower AG and BG herbivore resistance, and negative AG-BG herbivore feedbacks were much stronger for invasive genotypes. Lower tannin concentrations explained overall better AG and BG herbivore performances on invasive genotypes. However, changes in tannins and flavonoids affected AG and BG herbivores differently. These results suggest that divergent selection on chemical production in invasive plants may be critical in regulating herbivore performances and novel AG and BG herbivore communities in new environments.


Assuntos
Besouros , Herbivoria , Animais , Euphorbiaceae , Genótipo , Folhas de Planta , Raízes de Plantas , Plantas
12.
Ecol Lett ; 18(1): 48-56, 2015 01.
Artigo em Inglês | MEDLINE | ID: mdl-25376303

RESUMO

Climate change may shift interactions of invasive plants, herbivorous insects and native plants, potentially affecting biological control efficacy and non-target effects on native species. Here, we show how climate warming affects impacts of a multivoltine introduced biocontrol beetle on the non-target native plant Alternanthera sessilis in China. In field surveys across a latitudinal gradient covering their full distributions, we found beetle damage on A. sessilis increased with rising temperature and plant life history changed from annual to perennial. Experiments showed that elevated temperature changed plant life history and increased insect overwintering, damage and impacts on seedling recruitment. These results suggest that warming can shift phenologies, increase non-target effect magnitude and increase non-target effect occurrence by beetle range expansion to additional areas where A. sessilis occurs. This study highlights the importance of understanding how climate change affects species interactions for future biological control of invasive species and conservation of native species.


Assuntos
Amaranthaceae , Agentes de Controle Biológico , Mudança Climática , Besouros , Herbivoria , Animais , China , Ecossistema , Espécies Introduzidas
13.
Ann Bot ; 115(5): 841-6, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25681822

RESUMO

BACKGROUND AND AIMS: Many plants produce extrafloral nectar (EFN), and increase production following above-ground herbivory, presumably to attract natural enemies of the herbivores. Below-ground herbivores, alone or in combination with those above ground, may also alter EFN production depending on the specificity of this defence response and the interactions among herbivores mediated through plant defences. To date, however, a lack of manipulative experiments investigating EFN production induced by above- and below-ground herbivory has limited our understanding of how below-ground herbivory mediates indirect plant defences to affect above-ground herbivores and their natural enemies. METHODS: In a greenhouse experiment, seedlings of tallow tree (Triadica sebifera) were subjected to herbivory by a specialist flea beetle (Bikasha collaris) that naturally co-occurs as foliage-feeding adults and root-feeding larvae. Seedlings were subjected to above-ground adults and/or below-ground larvae herbivory, and EFN production was monitored. KEY RESULTS: Above- and/or below-ground herbivory significantly increased the percentage of leaves with active nectaries, the volume of EFN and the mass of soluble solids within the nectar. Simultaneous above- and below-ground herbivory induced a higher volume of EFN and mass of soluble solids than below-ground herbivory alone, but highest EFN production was induced by above-ground herbivory when below-ground herbivores were absent. CONCLUSIONS: The induction of EFN production by below-ground damage suggests that systemic induction underlies some of the EFN response. The strong induction by above-ground herbivory in the absence of below-ground herbivory points to specific induction based on above- and below-ground signals that may be adaptive for this above-ground indirect defence.


Assuntos
Besouros/fisiologia , Euphorbiaceae/química , Néctar de Plantas/metabolismo , Animais , Euphorbiaceae/fisiologia , Herbivoria , Interações Hospedeiro-Parasita , Larva , Folhas de Planta/química , Folhas de Planta/fisiologia , Raízes de Plantas/química , Raízes de Plantas/fisiologia , Brotos de Planta/química , Brotos de Planta/fisiologia
14.
Oecologia ; 174(3): 863-71, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24249116

RESUMO

During introduction, invasive plants can be released from specialist herbivores, but may retain generalist herbivores and encounter novel enemies. For fast-growing invasive plants, tolerance of herbivory via compensatory regrowth may be an important defense against generalist herbivory, but it is unclear whether tolerance responses are specifically induced by different herbivores and whether specificity differs among native and invasive plant populations. We conducted a greenhouse experiment to examine the variation among native and invasive populations of Chinese tallow tree, Triadica sebifera, in their specificity of tolerance responses to herbivores by exposing plants to herbivory from either one of two generalist caterpillars occurring in the introduced range of Triadica. Simultaneously, we measured the specificity of another defensive trait, extrafloral nectar (EFN) production, to detect potential tradeoffs between resistance and tolerance of herbivores. Invasive populations had higher aboveground biomass tolerance than native populations, and responded non-specifically to either herbivore, while native populations had significantly different and specific aboveground biomass responses to the two herbivores. Both caterpillar species similarly induced EFN in native and invasive populations. Plant tolerance and EFN were positively correlated or had no relationship and biomass in control and herbivore-damaged plants was positively correlated, suggesting little costs of tolerance. Relationships among these vegetative traits depended on herbivore type, suggesting that some defense traits may have positive associations with growth-related processes that are differently induced by herbivores. Importantly, loss of specificity in invasive populations indicates subtle evolutionary changes in defenses in invasive plants that may relate to and enhance their invasive success.


Assuntos
Herbivoria , Espécies Introduzidas , Sapium/fisiologia , Animais , Evolução Biológica , Biomassa , Néctar de Plantas
15.
Ecology ; 105(3): e4253, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272490

RESUMO

Invasive plants typically escape specialist herbivores but are often attacked by generalist herbivores in their introduced ranges. The shifting defense hypothesis suggests that this will cause invasive plants to evolve lower resistance against specialists, higher resistance against generalists, and greater tolerance to herbivore damage. However, the duration and direction of selective pressures can shape the evolutionary responses of resistance and tolerance for invasive plants. Two critical factors are (1) residence time (length of time that an invasive species has been in its introduced range) and (2) specialist herbivore reassociation (attack by purposely or accidentally introduced specialists). Yet, these two factors have not been considered simultaneously in previous quantitative syntheses. Here, we performed a meta-analysis with 367 effect sizes from 70 studies of 35 invasive plant species from native and invasive populations. We tested how the residence time of invasive plant species and specialist reassociation in their introduced ranges affected evolutionary responses of defenses against specialists and generalists, including herbivore resistance traits (physical barriers, digestibility reducers and toxins), resistance effects (performance of and damage caused by specialists or generalists) and tolerance to damage (from specialists or generalists). We found that residence time and specialist reassociation each significantly altered digestibility reducers, specialist performance, generalist damage, and tolerance to specialist damage. Furthermore, residence time and specialist reassociation strongly altered toxins and generalist performance, respectively. When we restricted consideration to invasive plant species with both longer residence times and no reassociation with specialists, invasive populations had lower resistance to specialists, similar resistance to generalists, and higher tolerance to damage from both herbivore types, compared with native populations. We conclude that the duration and direction of selective pressure shape the evolutionary responses of invasive plants. Under long-term (long residence time) and stable (no specialist reassociation) selective pressure, invasive plants generally decrease resistance to specialists and increase tolerance to generalist damage that provides mixed support for the shifting defense hypothesis.


Assuntos
Herbivoria , Plantas , Espécies Introduzidas , Fenótipo
16.
Proc Biol Sci ; 280(1767): 20131318, 2013 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-23902902

RESUMO

To date, it remains unclear how herbivore-induced changes in plant primary and secondary metabolites impact above-ground and below-ground herbivore interactions. Here, we report effects of above-ground (adult) and below-ground (larval) feeding by Bikasha collaris on nitrogen and secondary chemicals in shoots and roots of Triadica sebifera to explain reciprocal above-ground and below-ground insect interactions. Plants increased root tannins with below-ground herbivory, but above-ground herbivory prevented this increase and larval survival doubled. Above-ground herbivory elevated root nitrogen, probably contributing to increased larval survival. However, plants increased foliar tannins with above-ground herbivory and below-ground herbivory amplified this increase, and adult survival decreased. As either foliar or root tannins increased, foliar flavonoids decreased, suggesting a trade-off between these chemicals. Together, these results show that plant chemicals mediate contrasting effects of conspecific larval and adult insects, whereas insects may take advantage of plant responses to facilitate their offspring performance, which may influence population dynamics.


Assuntos
Besouros/fisiologia , Euphorbiaceae/metabolismo , Herbivoria , Animais , Carbono/metabolismo , China , Besouros/crescimento & desenvolvimento , Euphorbiaceae/crescimento & desenvolvimento , Comportamento Alimentar , Flavonoides/metabolismo , Larva/crescimento & desenvolvimento , Larva/fisiologia , Nitrogênio/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Taninos/metabolismo
17.
Ann Bot ; 112(4): 751-6, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23761685

RESUMO

BACKGROUND AND AIMS: Invasive plants can be released from specialist herbivores and encounter novel generalists in their introduced ranges, leading to variation in defence among native and invasive populations. However, few studies have examined how constitutive and induced indirect defences change during plant invasion, especially during the juvenile stage. METHODS: Constitutive extrafloral nectar (EFN) production of native and invasive populations of juvenile tallow tree (Triadica sebifera) were compared, and leaf clipping, and damage by a native specialist (Noctuid) and two native generalist caterpillars (Noctuid and Limacodid) were used to examine inducible EFN production. KEY RESULTS: Plants from introduced populations had more leaves producing constitutive EFN than did native populations, but the content of soluble solids of EFN did not differ. Herbivores induced EFN production more than simulated herbivory. The specialist (Noctuid) induced more EFN than either generalist for native populations. The content of soluble solids in EFN was higher (2·1 times), with the specialist vs. the generalists causing the stronger response for native populations, but the specialist response was always comparable with the generalist responses for invasive populations. CONCLUSIONS: These results suggest that constitutive and induced indirect defences are retained in juvenile plants of invasive populations even during plant establishment, perhaps due to generalist herbivory in the introduced range. However, responses specific to a specialist herbivore may be reduced in the introduced range where specialists are absent. This decreased defence may benefit specialist insects that are introduced for classical biological control of invasive plants.


Assuntos
Euphorbiaceae/fisiologia , Herbivoria , Espécies Introduzidas , Mariposas/fisiologia , Animais , Néctar de Plantas
18.
Environ Entomol ; 52(5): 870-878, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37530696

RESUMO

Invasive plants from their native and introduced ranges differ in their interactions with herbivores but it is not known whether they also vary in their interactions with herbivore natural enemies. Here, we used olfactometer bioassays and cage experiments to investigate how foraging behaviors of 2 parasitoid and 1 hyperparasitoid species depended on plant population origin. Triadica sebifera (Euphorbiaceae) is native to China but invasive in the United States. In China, it is fed on by a specialist noctuid Gadirtha fusca (Lepidoptera: Nolidae), which hosts a parasitoid Apanteles sp. (Hymenoptera: Microgastinae) and hyperparasitoid (Hymenoptera: Eurytomidae) plus a generalist aphid Toxoptera odinae (Homoptera: Aphidiidae) parasitized by Lysiphlebus confusus (Hymenoptera: Aphidiinae). Both parasitoids preferred plants infested by their host over herbivore-free plants in olfactometer bioassays. Apanteles sp. and Eurytomid wasps preferred G. fusca infested plants from China populations over those from US populations in olfactometer bioassays but L. confusus wasps did not discriminate between T. odinae infested plants from China vs. US populations. Similarly, G. fusca caterpillars on China population plants were more likely to be parasitized than ones on US population plants when they were in the same cage but odds of parasitism for T. odinae did not differ for those on China vs. US population plants. These results suggest that populations from the native and introduced ranges may differ in traits that impact higher trophic levels. This may have implications for successful control of invasive plants as biocontrol agents are introduced or herbivores begin to feed on them in their introduced ranges.

19.
Ecol Lett ; 15(6): 627-36, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22487445

RESUMO

Meta-analysis is increasingly used in ecology and evolutionary biology. Yet, in these fields this technique has an important limitation: phylogenetic non-independence exists among taxa, violating the statistical assumptions underlying traditional meta-analytic models. Recently, meta-analytical techniques incorporating phylogenetic information have been developed to address this issue. However, no syntheses have evaluated how often including phylogenetic information changes meta-analytic results. To address this gap, we built phylogenies for and re-analysed 30 published meta-analyses, comparing results for traditional vs. phylogenetic approaches and assessing which characteristics of phylogenies best explained changes in meta-analytic results and relative model fit. Accounting for phylogeny significantly changed estimates of the overall pooled effect size in 47% of datasets for fixed-effects analyses and 7% of datasets for random-effects analyses. Accounting for phylogeny also changed whether those effect sizes were significantly different from zero in 23 and 40% of our datasets (for fixed- and random-effects models, respectively). Across datasets, decreases in pooled effect size magnitudes after incorporating phylogenetic information were associated with larger phylogenies and those with stronger phylogenetic signal. We conclude that incorporating phylogenetic information in ecological meta-analyses is important, and we provide practical recommendations for doing so.


Assuntos
Metanálise como Assunto , Filogenia , Animais
20.
Ecology ; 93(11): 2343-52, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23236906

RESUMO

Interactions between above- and belowground herbivory may, affect plant performance and structure communities. Though many studies have documented interactions of invasive plants and.herbivores, none shows how above- and belowground herbivores interact to affect invasive plant performance. Here, in a common garden in China, we subjected genetically differentiated tallow trees (Triadica sebifera) from native (China) and invaded (United States) ranges to herbivory by aboveground adults and belowground larvae of a specialist beetle, Bikasha collaris. Overall, relative to plants from China, U.S. plants had greater total and aboveground mass, comparable belowground mass, lower resistance to both above- and belowground herbivory, and higher tolerance to aboveground herbivory only. Accordingly, aboveground adults had greater impacts on Chinese plants, but belowground larvae more strongly impacted U.S. plants. These results indicate that the invader may adopt an "aboveground first" strategy, allocating more resources aboveground in response to selection for increased competitive ability, which increases aboveground tolerance to herbivory. Furthermore, we found that adults facilitated larval success, and these feedbacks were stronger for U.S. plants, suggesting that aboveground feeding of adults may be associated with lower defenses and/or higher resources belowground in the invader. Therefore, plants may have evolved different responses to above- and belowground herbivory, which can affect invasion success and herbivore population dynamics. These findings may provide new insights for an effective biological control program against invasive plants.


Assuntos
Evolução Biológica , Besouros/fisiologia , Ecossistema , Euphorbiaceae/fisiologia , Herbivoria , Espécies Introduzidas , Animais , China , Larva , Folhas de Planta , Solo , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA