Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 589(7841): 236-241, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33442043

RESUMO

The dominant feature of large-scale mass transfer in the modern ocean is the Atlantic meridional overturning circulation (AMOC). The geometry and vigour of this circulation influences global climate on various timescales. Palaeoceanographic evidence suggests that during glacial periods of the past 1.5 million years the AMOC had markedly different features from today1; in the Atlantic basin, deep waters of Southern Ocean origin increased in volume while above them the core of the North Atlantic Deep Water (NADW) shoaled2. An absence of evidence on the origin of this phenomenon means that the sequence of events leading to global glacial conditions remains unclear. Here we present multi-proxy evidence showing that northward shifts in Antarctic iceberg melt in the Indian-Atlantic Southern Ocean (0-50° E) systematically preceded deep-water mass reorganizations by one to two thousand years during Pleistocene-era glaciations. With the aid of iceberg-trajectory model experiments, we demonstrate that such a shift in iceberg trajectories during glacial periods can result in a considerable redistribution of freshwater in the Southern Ocean. We suggest that this, in concert with increased sea-ice cover, enabled positive buoyancy anomalies to 'escape' into the upper limb of the AMOC, providing a teleconnection between surface Southern Ocean conditions and the formation of NADW. The magnitude and pacing of this mechanism evolved substantially across the mid-Pleistocene transition, and the coeval increase in magnitude of the 'southern escape' and deep circulation perturbations implicate this mechanism as a key feedback in the transition to the '100-kyr world', in which glacial-interglacial cycles occur at roughly 100,000-year periods.

2.
NMR Biomed ; 35(12): e4804, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35892279

RESUMO

Filter-exchange imaging (FEXI) has already been utilized in several biomedical studies for evaluating the permeability of cell membranes. The method relies on suppressing the extracellular signal using strong diffusion weighting (the mobility filter causing a reduction in the overall diffusivity) and monitoring the subsequent diffusivity recovery. Using Monte Carlo simulations, we demonstrate that FEXI is sensitive not uniquely to the transcytolemmal exchange but also to the geometry of involved compartments: complex geometry offers locations where spins remain unaffected by the mobility filter; moving to other locations afterwards, such spins contribute to the diffusivity recovery without actually permeating any membrane. This exchange mechanism is a warning for those who aim to use FEXI in complex media such as brain gray matter and opens wide scope for investigation towards crystallizing the genuine membrane permeation and characterizing the compartment geometry.


Assuntos
Imagem de Difusão por Ressonância Magnética , Imagem de Difusão por Ressonância Magnética/métodos , Método de Monte Carlo , Difusão
3.
Neuroimage ; 225: 117529, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33147507

RESUMO

Validation and interpretation of diffusion magnetic resonance imaging (dMRI) requires detailed understanding of the actual microstructure restricting the diffusion of water molecules. In this study, we used serial block-face scanning electron microscopy (SBEM), a three-dimensional electron microscopy (3D-EM) technique, to image seven white and grey matter volumes in the rat brain. SBEM shows excellent contrast of cellular membranes, which are the major components restricting the diffusion of water in tissue. Additionally, we performed 3D structure tensor (3D-ST) analysis on the SBEM volumes and parameterised the resulting orientation distributions using Watson and angular central Gaussian (ACG) probability distributions as well as spherical harmonic (SH) decomposition. We analysed how these parameterisations described the underlying orientation distributions and compared their orientation and dispersion with corresponding parameters from two dMRI methods, neurite orientation dispersion and density imaging (NODDI) and constrained spherical deconvolution (CSD). Watson and ACG parameterisations and SH decomposition captured well the 3D-ST orientation distributions, but ACG and SH better represented the distributions due to its ability to model asymmetric dispersion. The dMRI parameters corresponded well with the 3D-ST parameters in the white matter volumes, but the correspondence was less evident in the more complex grey matter. SBEM imaging and 3D-ST analysis also revealed that the orientation distributions were often not axially symmetric, a property neatly captured by the ACG distribution. Overall, the ability of SBEM to image diffusion barriers in intricate detail, combined with 3D-ST analysis and parameterisation, provides a step forward toward interpreting and validating the dMRI signals in complex brain tissue microstructure.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/ultraestrutura , Imagem de Tensor de Difusão , Imageamento Tridimensional , Microscopia Eletrônica , Animais , Imagem de Difusão por Ressonância Magnética , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/ultraestrutura , Ratos , Substância Branca/diagnóstico por imagem , Substância Branca/ultraestrutura
4.
Neuroimage ; 229: 117734, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33454412

RESUMO

Skull-stripping and region segmentation are fundamental steps in preclinical magnetic resonance imaging (MRI) studies, and these common procedures are usually performed manually. We present Multi-task U-Net (MU-Net), a convolutional neural network designed to accomplish both tasks simultaneously. MU-Net achieved higher segmentation accuracy than state-of-the-art multi-atlas segmentation methods with an inference time of 0.35 s and no pre-processing requirements. We trained and validated MU-Net on 128 T2-weighted mouse MRI volumes as well as on the publicly available MRM NeAT dataset of 10 MRI volumes. We tested MU-Net with an unusually large dataset combining several independent studies consisting of 1782 mouse brain MRI volumes of both healthy and Huntington animals, and measured average Dice scores of 0.906 (striati), 0.937 (cortex), and 0.978 (brain mask). Further, we explored the effectiveness of our network in the presence of different architectural features, including skip connections and recently proposed framing connections, and the effects of the age range of the training set animals. These high evaluation scores demonstrate that MU-Net is a powerful tool for segmentation and skull-stripping, decreasing inter and intra-rater variability of manual segmentation. The MU-Net code and the trained model are publicly available at https://github.com/Hierakonpolis/MU-Net.


Assuntos
Encéfalo/diagnóstico por imagem , Bases de Dados Factuais , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Crânio/diagnóstico por imagem , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
NMR Biomed ; 34(2): e4438, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33219598

RESUMO

The primary lesion arising from the initial insult after traumatic brain injury (TBI) triggers a cascade of secondary tissue damage, which may also progress to connected brain areas in the chronic phase. The aim of this study was, therefore, to investigate variations in the susceptibility distribution related to these secondary tissue changes in a rat model after severe lateral fluid percussion injury. We compared quantitative susceptibility mapping (QSM) and R2 * measurements with histological analyses in white and grey matter areas outside the primary lesion but connected to the lesion site. We demonstrate that susceptibility variations in white and grey matter areas could be attributed to reduction in myelin, accumulation of iron and calcium, and gliosis. QSM showed quantitative changes attributed to secondary damage in areas located rostral to the lesion site that appeared normal in R2 * maps. However, combination of QSM and R2 * was informative in disentangling the underlying tissue changes such as iron accumulation, demyelination, or calcifications. Therefore, combining QSM with R2 * measurement can provide a more detailed assessment of tissue changes and may pave the way for improved diagnosis of TBI, and several other complex neurodegenerative diseases.


Assuntos
Química Encefálica , Dano Encefálico Crônico/diagnóstico por imagem , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Neuroimagem/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Animais , Dano Encefálico Crônico/etiologia , Lesões Encefálicas Traumáticas/complicações , Mapeamento Encefálico/métodos , Cálcio/análise , Contagem de Células , Corpo Caloso/química , Corpo Caloso/diagnóstico por imagem , Gliose/diagnóstico por imagem , Substância Cinzenta/química , Substância Cinzenta/diagnóstico por imagem , Ferro/análise , Masculino , Bainha de Mielina/química , Ratos , Ratos Sprague-Dawley , Substância Branca/química , Substância Branca/diagnóstico por imagem
6.
NMR Biomed ; 34(4): e4483, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33543563

RESUMO

MRI is a common method of prostate cancer diagnosis. Several MRI-derived markers, including the apparent diffusion coefficient (ADC) based on diffusion-weighted imaging, have been shown to provide values for prostate cancer detection and characterization. The hypothesis of the study was that docetaxel chemotherapy response could be picked up earlier with rotating frame relaxation times TRAFF2 and TRAFF4 than with the continuous wave T1ρ , adiabatic T1ρ , adiabatic T2ρ , T1 , T2 or water ADC. Human PC3 prostate cancer cells expressing a red fluorescent protein were implanted in 21 male mice. Docetaxel chemotherapy was given once a week starting 1 week after cell implantation for 10 randomly selected mice, while the rest served as a control group (n = 11). The MRI consisted of relaxation along a fictitious field (RAFF) in the second (RAFF2) and fourth (RAFF4) rotating frames, T1 and T2 , continuous wave T1ρ , adiabatic T1ρ and adiabatic T2ρ relaxation time measurements and water ADC. MRI was conducted at 7 T, once a week up to 4 weeks from cell implantation. The tumor volume was monitored using T2 -weighted MRI and optical imaging. The histology was evaluated after the last imaging time point. Significantly reduced RAFFn, T1ρ, T2ρ and conventional relaxation times 4 weeks after tumor implantation were observed in the treated tumors compared with the controls. The clearest short- and long-term responses were obtained with T1 , while no clear improvement in response to treatment was detected with novel methods compared with conventional methods or with RAFFn compared with all others. The tumor volume decreased after a two-week time point for the treated group and increased significantly in the control group, which was supported by increasing red fluorescent light emission in the control tumors. Decreased relaxation times were associated with successful chemotherapy outcomes. The results indicate altered relaxation mechanisms compared with higher dose chemotherapies previously published.


Assuntos
Docetaxel/uso terapêutico , Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/tratamento farmacológico , Animais , Difusão , Modelos Animais de Doenças , Humanos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Carga Tumoral , Água
7.
Epilepsia ; 62(8): 1852-1864, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34245005

RESUMO

OBJECTIVE: To identify magnetic resonance imaging (MRI) biomarkers for post-traumatic epilepsy. METHODS: The EPITARGET (Targets and biomarkers for antiepileptogenesis, epitarget.eu) animal cohort completing T2 relaxation and diffusion tensor MRI follow-up and 1-month-long video-electroencephalography monitoring included 98 male Sprague-Dawley rats with traumatic brain injury and 18 controls. T2 imaging was performed on day (D) 2, D7, and D21 and diffusion tensor imaging (DTI) on D7 and D21 using a 7-Tesla Bruker PharmaScan MRI scanner. The mean and standard deviation (SD) of the T2 relaxation rate, multiple diffusivity measures, and diffusion anisotropy at each time-point within the ventroposterolateral and ventroposteromedial thalamus were used as predictor variables in multi-variable logistic regression models to distinguish rats with and without epilepsy. RESULTS: Twenty-nine percent (28/98) of the rats with traumatic brain injury (TBI) developed epilepsy. The best-performing logistic regression model utilized the D2 and D7 T2 relaxation time as well as the D7 diffusion tensor data. The model distinguished rats with and without epilepsy (Bonferroni-corrected p-value < .001) with a cross-validated concordance statistic of 0.74 (95% confidence interval [CI] 0.60-0.84). In a cross-validated classification test, the model exhibited 54% sensitivity and 91% specificity, enriching the epilepsy rate within the study population from the expected 29% to 71%. A model using the D2 T2 data only resulted in a 73% enriched epilepsy rate (regression p-value .007, cross-validated concordance 0.70, 95% CI 0.56-0.80, sensitivity 29%, specificity 96%). SIGNIFICANCE: An MRI parameter set reporting on acute and subacute neuropathologic changes common to experimental and human TBI presents a diagnostic biomarker for post-traumatic epileptogenesis. Significant enrichment of the study population was achieved even when using a single time-point measurement, producing an expected epilepsy rate of 73%.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia , Animais , Biomarcadores , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Imagem de Tensor de Difusão , Modelos Animais de Doenças , Epilepsia/diagnóstico por imagem , Epilepsia/etiologia , Humanos , Masculino , Prognóstico , Ratos , Ratos Sprague-Dawley , Tálamo/diagnóstico por imagem
8.
Neuroimage ; 213: 116750, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32198048

RESUMO

Deep brain stimulation (DBS) has become an important tool in the management of a wide spectrum of diseases in neurology and psychiatry. Target selection is a vital aspect of DBS so that only the desired areas are stimulated. Segmented leads and current steering have been shown to be promising additions to DBS technology enabling better control of the stimulating electric field. Recently introduced orientation selective DBS (OS-DBS) is a related development permitting sensitization of the stimulus to axonal pathways with different orientations by freely controlling the primary direction of the electric field using multiple contacts. Here, we used OS-DBS to stimulate the subthalamic nucleus (STN) in healthy rats while simultaneously monitoring the induced brain activity with fMRI. Maximal activation of the sensorimotor and basal ganglia-thalamocortical networks was observed when the electric field was aligned mediolaterally in the STN pointing in the lateral direction, while no cortical activation was observed with the electric field pointing medially to the opposite direction. Such findings are consistent with mediolateral main direction of the STN fibers, as seen with high resolution diffusion imaging and histology. The asymmetry of the OS-DBS dipolar field distribution using three contacts along with the potential stimulation of the internal capsule, are also discussed. We conclude that OS-DBS offers an additional degree of flexibility for optimization of DBS of the STN which may enable a better treatment response.


Assuntos
Estimulação Encefálica Profunda/métodos , Eletrodos Implantados , Núcleo Subtalâmico/fisiologia , Animais , Imageamento por Ressonância Magnética , Masculino , Ratos , Ratos Sprague-Dawley
9.
Neuroimage ; 172: 404-414, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29412154

RESUMO

Diffusion tensor imaging (DTI) reveals microstructural features of grey and white matter non-invasively. The contrast produced by DTI, however, is not fully understood and requires further validation. We used serial block-face scanning electron microscopy (SBEM) to acquire tissue metrics, i.e., anisotropy and orientation, using three-dimensional Fourier transform-based (3D-FT) analysis, to correlate with fractional anisotropy and orientation in DTI. SBEM produces high-resolution 3D data at the mesoscopic scale with good contrast of cellular membranes. We analysed selected samples from cingulum, corpus callosum, and perilesional cortex of sham-operated and traumatic brain injury (TBI) rats. Principal orientations produced by DTI and 3D-FT in all samples were in good agreement. Anisotropy values showed similar patterns of change in corresponding DTI and 3D-FT parameters in sham-operated and TBI rats. While DTI and 3D-FT anisotropy values were similar in grey matter, 3D-FT anisotropy values were consistently lower than fractional anisotropy values from DTI in white matter. We also evaluated the effect of resolution in 3D-FT analysis. Despite small angular differences in grey matter samples, lower resolution datasets provided reliable results, allowing for analysis of larger fields of view. Overall, 3D SBEM allows for more sophisticated validation studies of diffusion imaging contrast from a tissue microstructural perspective.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Microscopia Eletrônica de Varredura/métodos , Animais , Anisotropia , Imagem de Tensor de Difusão/métodos , Análise de Fourier , Masculino , Ratos , Ratos Sprague-Dawley
10.
J Magn Reson Imaging ; 47(2): 554-564, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28580758

RESUMO

PURPOSE: To investigate pathological changes in the rat brain after pilocarpine-induced status epilepticus using quantitative susceptibility mapping (QSM). MATERIALS AND METHODS: 3D multiecho gradient-echo (GRE) data were acquired from ex vivo brains of pilocarpine-injected and age-matched control rats at 11.7T. Maps of R2* and quantitative susceptibility were calculated from the acquired 3D GRE magnitude and phase data, respectively. QSM and R2* maps were compared with Perls' (iron) and Alizarin-red-S (calcium) stainings in the same brains to investigate the pathophysiological basis of susceptibility contrast. RESULTS: Bilaterally symmetric lesions were detected in reproducible thalamic regions of pilocarpine-treated rats, characterized by hyperintensity in R2* maps. In comparison, quantitative susceptibility maps demonstrated heterogeneous contrast within the lesions, with distinct hyperintense (paramagnetic) and hypointense (diamagnetic) areas. Comparison with histological assessment revealed localized deposits of iron- and calcium-positive granules in thalamic nuclei corresponding to paramagnetic and diamagnetic areas delineated in the susceptibility maps, respectively. Pronounced differences were observed in the lesions between background-corrected phase images and reconstructed susceptibility maps, indicating unreliable differentiation of iron and calcium deposits in phase maps. Multiple linear regression showed a significant association between susceptibility values and measured optical densities (ODs) of iron and calcium in the lesions (R2 = 0.42, P < 0.001), with a positive dependence on OD of iron and negative dependence on OD of calcium. CONCLUSION: QSM can detect and differentiate pathological iron and calcium deposits with high sensitivity and improved spatial accuracy compared to R2* or GRE phase images, rendering it a promising technique for diagnosing thalamic lesions after status epilepticus. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:554-564.


Assuntos
Cálcio/metabolismo , Ferro/metabolismo , Imageamento por Ressonância Magnética/métodos , Estado Epiléptico/metabolismo , Tálamo/diagnóstico por imagem , Tálamo/metabolismo , Animais , Modelos Animais de Doenças , Masculino , Ratos , Ratos Wistar , Sensibilidade e Especificidade , Estado Epiléptico/patologia , Tálamo/patologia
11.
Epilepsia ; 59(5): 945-958, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29637555

RESUMO

OBJECTIVE: Status epilepticus (SE) is an abnormally prolonged epileptic seizure that if associated with convulsive motor symptoms is potentially life threatening for a patient. However, 20%-40% of patients with SE lack convulsive events and instead present with more subtle semiology such as altered consciousness and less motor activity. Today, there is no general consensus regarding to what extent nonconvulsive SE (NCSE) is harmful to the brain, which adds uncertainty to stringent treatment regimes. METHODS: Here, we evaluated brain pathology in an experimental rat and mouse model of complex partial NCSE originating in the temporal lobes with Western blot analysis, immunohistochemistry, and ex vivo diffusion tensor imaging (DTI). The NCSE was induced by electrical stimulation with intrahippocampal electrodes and terminated with pentobarbital anesthesia. Video-electroencephalographic recordings were performed throughout the experiment. RESULTS: DTI of mice 7 weeks post-NCSE showed no robust long-lasting changes in fractional anisotropy within the hippocampal epileptic focus. Instead, we found pathophysiological changes developing over time when measuring protein levels and cell counts in extracted brain tissue. At 6 and 24 hours post-NCSE in rats, few changes were observed within the hippocampus and cortical or subcortical structures in Western blot analyses of key components of the cellular immune response and synaptic protein expression, while neurodegeneration had started. However, 1 week post-NCSE, both excitatory and inhibitory synaptic protein levels were decreased in hippocampus, concomitant with an excessive microglial and astrocytic activation. At 4 weeks, a continuous immune response in the hippocampus was accompanied with neuronal loss. Levels of the excitatory synaptic adhesion molecule N-cadherin were decreased specifically in rats that developed unprovoked spontaneous seizures (epileptogenesis) within 1 month following NCSE, compared to rats only exhibiting acute symptomatic seizures within 1 week post-NCSE. SIGNIFICANCE: These findings provide evidence for a significant brain pathology following NCSE in an experimental rodent model.


Assuntos
Encéfalo/patologia , Estado Epiléptico/patologia , Animais , Encéfalo/fisiopatologia , Imagem de Tensor de Difusão , Eletroencefalografia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Estado Epiléptico/fisiopatologia
12.
Neuroimage ; 152: 221-236, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28267625

RESUMO

Imaging markers for monitoring disease progression, recovery, and treatment efficacy are a major unmet need for many neurological diseases, including epilepsy. Recent evidence suggests that diffusion tensor imaging (DTI) provides high microstructural contrast even outside major white matter tracts. We hypothesized that in vivo DTI could detect progressive microstructural changes in the dentate gyrus and the hippocampal CA3bc in the rat brain after status epilepticus (SE). To test this hypothesis, we induced SE with systemic kainic acid or pilocarpine in adult male Wistar rats and subsequently scanned them using in vivo DTI at five time-points: prior to SE, and 10, 20, 34, and 79 days post SE. In order to tie the DTI findings to changes in the tissue microstructure, myelin- and glial fibrillary acidic protein (GFAP)-stained sections from the same animals underwent Fourier analysis. We compared the Fourier analysis parameters, anisotropy index and angle of myelinated axons or astrocyte processes, to corresponding DTI parameters, fractional anisotropy (FA) and the orientation angle of the principal eigenvector. We found progressive detectable changes in DTI parameters in both the dentate gyrus (FA, axial diffusivity [D||], linear anisotropy [CL] and spherical anisotropy [CS], p<0.001, linear mixed-effects model [LMEM]) and the CA3bc (FA, D||, CS, and angle, p<0.001, LMEM; CL and planar anisotropy [CP], p<0.01, LMEM) post SE. The Fourier analysis revealed that both myelinated axons and astrocyte processes played a role in the water diffusion anisotropy changes detected by DTI in individual portions of the dentate gyrus (suprapyramidal blade, mid-portion, and infrapyramidal blade). In the whole dentate gyrus, myelinated axons markedly contributed to the water diffusion changes. In CA3bc as well as in CA3b and CA3c, both myelinated axons and astrocyte processes contributed to water diffusion anisotropy and orientation. Our study revealed that DTI is a promising method for noninvasive detection of microstructural alterations in the hippocampus proper. These alterations may be potential imaging markers for epileptogenesis.


Assuntos
Mapeamento Encefálico/métodos , Giro Denteado/patologia , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Progressão da Doença , Estado Epiléptico/patologia , Animais , Anisotropia , Astrócitos/patologia , Análise de Fourier , Ácido Caínico/administração & dosagem , Masculino , Fibras Nervosas Mielinizadas/patologia , Ratos Wistar , Estado Epiléptico/induzido quimicamente
13.
NMR Biomed ; 30(2)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27982487

RESUMO

Traumatic brain injury (TBI) is associated with various neurocognitive deficits, and rapid assessment of the damage is potentially important for the prevention and treatment of these deficits. Imaging assessment of mild or moderate damage outside the primary lesion area after TBI, however, remains challenging. Magnetization transfer (MT) has clearly been underutilized in imaging the damage caused by TBI. Here, we applied the MT ratio (MTR) using sweep imaging with Fourier transformation (SWIFT) to study microstructural tissue damage in the thalamocortical pathway outside the primary lesion in a lateral fluid percussion injury rat model of TBI, 5 months after injury. MTR was decreased in layers VIb-IV of the barrel cortex and related subcortical areas, mainly indicating demyelination, which was verified by histology. The largest MTR change in the cortex was in layer VIb (-8.2%, pFDR  = 0.01), and the largest MTR change in the subcortical areas was in the caudal-most portion of the internal capsule (-11.0%, pFDR  < 0.005). These areas exhibited the greatest demyelination and substantial cellularity attributed to gliosis. Correlation analysis of group-averaged results from the subcortical areas revealed an excellent correlation of MTR with myelin (r2  = 0.94, p < 0.001), but no correlation with increased cellularity as detected by Nissl staining. Thus, MTR using SWIFT can be a valuable tool for the assessment of subtle changes after TBI in both cortical and subcortical areas.


Assuntos
Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/patologia , Córtex Cerebral/diagnóstico por imagem , Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/patologia , Imagem de Tensor de Difusão/métodos , Tálamo/diagnóstico por imagem , Algoritmos , Animais , Córtex Cerebral/patologia , Aumento da Imagem/métodos , Masculino , Bainha de Mielina/patologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/patologia , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador , Tálamo/patologia
14.
Magn Reson Med ; 75(1): 161-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25648507

RESUMO

PURPOSE: Brain myelin plays an important role in normal brain function. Demyelination is involved in many degenerative brain diseases, thus quantitative imaging of myelin has been under active investigation. In previous work, we demonstrated the capability of the method known as Relaxation Along a Fictitious Field (RAFF) in the rotating frame of rank n (RAFFn) to provide image contrast between white and gray matter in human and rat brains. Here, we provide evidence pointing to myelin being the major source of this contrast. METHODS: RAFFn relaxation time constant (TRAFFn) was mapped in rat brain ex vivo. TRAFFn was quantified in 12 different brain areas. TRAFFn values were compared with multiple other MRI metrics (T1, T2 , continuous wave T1ρ, adiabatic T1ρ and T2ρ, magnetization transfer ratio), and with histologic measurements of cell density, myelin and iron content. RESULTS: Highest contrast between white and grey matter was obtained with TRAFFn in the rotating frames of ranks n = 4 and 5. TRAFFn values correlated strongly with myelin content, whereas no associations between TRAFFn and iron content or cell density were found. CONCLUSION: TRAFFn with n = 4 or 5 provides a high sensitivity for selective myelin mapping in the rat brain.


Assuntos
Algoritmos , Encéfalo/ultraestrutura , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Bainha de Mielina/ultraestrutura , Animais , Feminino , Aumento da Imagem/métodos , Ratos , Ratos Wistar , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
Neurobiol Dis ; 72 Pt B: 224-32, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24912075

RESUMO

Disease modification of epilepsy refers to the alleviation of epileptogenesis or comorbidities after genetic or acquired epileptogenic brain insults. There are currently 30 proof-of-concept experimental pharmacologic studies that have demonstrated some beneficial disease-modifying effects. None of these studies, however, has yet passed from the laboratory to the clinic. The International League Against Epilepsy and American Epilepsy Society working groups on antiepileptogenic (AEG) therapies recently released recommendations for conducting preclinical AEG studies, taking into account many of the critiques raised by previous study designs. One of the issues relates to the lack of analysis of AEG efficacy in both sexes. A review of the literature reveals that most of the preclinical studies have been performed using male rodents, whereas clinical study cohorts include both males and females. Therefore, it is important to determine whether sex differences should be taken into account to a greater extent than they have been historically at different phases of experimental studies. Here we address the following questions based on analysis of available experimental AEG studies: (a) whether sex differences should be considered when searching for novel AEG targets, (b) how sex differences can affect the preclinical AEG study designs and analysis of outcome measures, and (c) what factors should be considered when examining the effect of sex on outcome of clinical AEG trials or the clinical use of AEGs.


Assuntos
Anticonvulsivantes/uso terapêutico , Epilepsia/tratamento farmacológico , Caracteres Sexuais , Anticonvulsivantes/efeitos adversos , Anticonvulsivantes/farmacocinética , Epilepsia/metabolismo , Feminino , Hormônios Esteroides Gonadais/metabolismo , Humanos , Masculino , Gravidez , Complicações na Gravidez/induzido quimicamente
16.
Clin Endocrinol (Oxf) ; 81(1): 141-51, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24372023

RESUMO

OBJECTIVE: Pregnancy is characterized by several metabolic changes that promote fat gain and later onset of insulin resistance. As Brain-derived neurotrophic factor (BDNF) decreases hyperglycaemia and hyperphagia, we aimed to investigate the potential role of placental and circulating BDNF levels in these pregnancy-related metabolic changes in rats and humans. DESIGN AND METHODS: We identified the mRNA and protein expression of placental BDNF and its receptor TrkB using real-time PCR, Western blot and immunohistochemical approaches in both rat and humans. Serum BDNF was measured by ELISA. We also did a longitudinal prospective cohort study in 42 pregnant women to assess BDNF levels and correlations with other metabolic parameters. RESULTS: We found that BDNF and TrkB are expressed in both rat and human placenta. In rat, both placental mRNA and serum levels are increased throughout pregnancy, whereas their protein levels are significantly decreased at the end of gestation. Serum BDNF levels in pregnant women are significantly lower in the first trimester when compared to the second and third trimester (P < 0·0148, P < 0·0012, respectively). Serum BDNF levels were negatively correlated with gestational age at birth and fasting glucose levels. CONCLUSION: Our findings suggest that both BDNF and its receptor TrkB are expressed in rodent and human placenta being regulated during pregnancy. Taken together, these findings support a role of BDNF in the regulation of several metabolic functions during pregnancy.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/sangue , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Placenta/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Feminino , Humanos , Imunoquímica , Gravidez , RNA Mensageiro , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Receptor trkB/sangue , Receptor trkB/genética , Receptor trkB/metabolismo
17.
Epilepsy Behav ; 38: 19-24, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24529830

RESUMO

Traumatic brain injury (TBI) can cause a myriad of sequelae depending on its type, severity, and location of injured structures. These can include mood disorders, posttraumatic stress disorder and other anxiety disorders, personality disorders, aggressive disorders, cognitive changes, chronic pain, sleep problems, motor or sensory impairments, endocrine dysfunction, gastrointestinal disturbances, increased risk of infections, pulmonary disturbances, parkinsonism, posttraumatic epilepsy, or their combinations. The progression of individual pathologies leading to a given phenotype is variable, and some progress for months. Consequently, the different post-TBI phenotypes appear within different time windows. In parallel with morbidogenesis, spontaneous recovery occurs both in experimental models and in human TBI. A great challenge remains; how can we dissect the specific mechanisms that lead to the different endophenotypes, such as posttraumatic epileptogenesis, in order to identify treatment approaches that would not compromise recovery?


Assuntos
Epilepsia Pós-Traumática/fisiopatologia , Animais , Epilepsia Pós-Traumática/classificação , Humanos
18.
Front Neurosci ; 18: 1344076, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572151

RESUMO

Introduction: Type C hepatic encephalopathy (HE) is a decompensating event of chronic liver disease leading to severe motor and cognitive impairment. The progression of type C HE is associated with changes in brain metabolite concentrations measured by 1H magnetic resonance spectroscopy (MRS), most noticeably a strong increase in glutamine to detoxify brain ammonia. In addition, alterations of brain cellular architecture have been measured ex vivo by histology in a rat model of type C HE. The aim of this study was to assess the potential of diffusion-weighted MRS (dMRS) for probing these cellular shape alterations in vivo by monitoring the diffusion properties of the major brain metabolites. Methods: The bile duct-ligated (BDL) rat model of type C HE was used. Five animals were scanned before surgery and 6- to 7-week post-BDL surgery, with each animal being used as its own control. 1H-MRS was performed in the hippocampus (SPECIAL, TE = 2.8 ms) and dMRS in a voxel encompassing the entire brain (DW-STEAM, TE = 15 ms, diffusion time = 120 ms, maximum b-value = 25 ms/µm2) on a 9.4 T scanner. The in vivo MRS acquisitions were further validated with histological measures (immunohistochemistry, Golgi-Cox, electron microscopy). Results: The characteristic 1H-MRS pattern of type C HE, i.e., a gradual increase of brain glutamine and a decrease of the main organic osmolytes, was observed in the hippocampus of BDL rats. Overall increased metabolite diffusivities (apparent diffusion coefficient and intra-stick diffusivity-Callaghan's model, significant for glutamine, myo-inositol, and taurine) and decreased kurtosis coefficients were observed in BDL rats compared to control, highlighting the presence of osmotic stress and possibly of astrocytic and neuronal alterations. These results were consistent with the microstructure depicted by histology and represented by a decline in dendritic spines density in neurons, a shortening and decreased number of astrocytic processes, and extracellular edema. Discussion: dMRS enables non-invasive and longitudinal monitoring of the diffusion behavior of brain metabolites, reflecting in the present study the globally altered brain microstructure in BDL rats, as confirmed ex vivo by histology. These findings give new insights into metabolic and microstructural abnormalities associated with high brain glutamine and its consequences in type C HE.

19.
ArXiv ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38259346

RESUMO

Biophysical modeling of diffusion MRI (dMRI) offers the exciting potential of bridging the gap between the macroscopic MRI resolution and microscopic cellular features, effectively turning the MRI scanner into a noninvasive in vivo microscope. In brain white matter, the Standard Model (SM) interprets the dMRI signal in terms of axon dispersion, intra- and extra-axonal water fractions and diffusivities. However, for SM to be fully applicable and correctly interpreted, it needs to be carefully evaluated using histology. Here, we perform a comprehensive histological validation of the SM parameters, by characterizing WM microstructure in sham and injured rat brains using volume (3d) electron microscopy (EM) and ex vivo dMRI. Sensitivity is evaluated by how close each SM metric is to its histological counterpart, and specificity by how independent it is from other, non-corresponding histological features. This comparison reveals that SM is sensitive and specific to microscopic properties, clearing the way for the clinical adoption of in vivo dMRI derived SM parameters as biomarkers for neurological disorders.

20.
Sci Rep ; 13(1): 2219, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755032

RESUMO

Our study explores the potential of conventional and advanced diffusion MRI techniques including diffusion tensor imaging (DTI), and single-shell 3-tissue constrained spherical deconvolution (SS3T-CSD) to investigate complex microstructural changes following severe traumatic brain injury in rats at a chronic phase. Rat brains after sham-operation or lateral fluid percussion (LFP) injury were scanned ex vivo in a 9.4 T scanner. Our region-of-interest-based approach of tensor-, and SS3T-CSD derived fixel-, 3-tissue signal fraction maps were sensitive to changes in both white matter (WM) and grey matter (GM) areas. Tensor-based measures, such as fractional anisotropy (FA) and radial diffusivity (RD), detected more changes in WM and GM areas as compared to fixel-based measures including apparent fiber density (AFD), peak FOD amplitude and primary fiber bundle density, while 3-tissue signal fraction maps revealed distinct changes in WM, GM, and phosphate-buffered saline (PBS) fractions highlighting the complex tissue microstructural alterations post-trauma. Track-weighted imaging demonstrated changes in track morphology including reduced curvature and average pathlength distal from the primary lesion in severe TBI rats. In histological analysis, changes in the diffusion MRI measures could be associated to decreased myelin density, loss of myelinated axons, and increased cellularity, revealing progressive microstructural alterations in these brain areas five months after injury. Overall, this study highlights the use of combined conventional and advanced diffusion MRI measures to obtain more precise insights into the complex tissue microstructural alterations in chronic phase of severe brain injury.


Assuntos
Lesões Encefálicas Traumáticas , Substância Branca , Ratos , Animais , Imagem de Tensor de Difusão/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA