RESUMO
Upon heterologous overexpression, many proteins misfold or aggregate, thus resulting in low functional yields. Human acetylcholinesterase (hAChE), an enzyme mediating synaptic transmission, is a typical case of a human protein that necessitates mammalian systems to obtain functional expression. We developed a computational strategy and designed an AChE variant bearing 51 mutations that improved core packing, surface polarity, and backbone rigidity. This variant expressed at â¼2,000-fold higher levels in E. coli compared to wild-type hAChE and exhibited 20°C higher thermostability with no change in enzymatic properties or in the active-site configuration as determined by crystallography. To demonstrate broad utility, we similarly designed four other human and bacterial proteins. Testing at most three designs per protein, we obtained enhanced stability and/or higher yields of soluble and active protein in E. coli. Our algorithm requires only a 3D structure and several dozen sequences of naturally occurring homologs, and is available at http://pross.weizmann.ac.il.
Assuntos
Acetilcolinesterase/metabolismo , Biologia Computacional/métodos , Escherichia coli/enzimologia , Engenharia de Proteínas/métodos , Acetilcolinesterase/química , Acetilcolinesterase/genética , Algoritmos , Automação Laboratorial , Simulação por Computador , Desenho Assistido por Computador , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Escherichia coli/genética , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Mutação , Hidrolases de Triester Fosfórico/genética , Hidrolases de Triester Fosfórico/metabolismo , Conformação Proteica , Desnaturação Proteica , Estabilidade Proteica , Sirtuínas/genética , Sirtuínas/metabolismo , Relação Estrutura-Atividade , TemperaturaRESUMO
"Newly Born" proteins, devoid of detectable homology to any other proteins, known as orphan proteins, occur in a single species or within a taxonomically restricted gene family. They are generated by the expression of novel open reading frames, and appear throughout evolution. We were curious if three recently developed programs for predicting protein structures, namely, AlphaFold2, RoseTTAFold, and ESMFold, might be of value for comparison of such "Newly Born" proteins to random polypeptides with amino acid content similar to that of native proteins, which have been called "Never Born" proteins. The programs were used to compare the structures of two sets of "Never Born" proteins that had been expressed-Group 1, which had been shown experimentally to possess substantial secondary structure, and Group 3, which had been shown to be intrinsically disordered. Overall, although the models generated were scored as being of low quality, they nevertheless revealed some general principles. Specifically, all four members of Group 1 were predicted to be compact by all three algorithms, in agreement with the experimental data, whereas the members of Group 3 were predicted to be very extended, as would be expected for intrinsically disordered proteins, again consistent with the experimental data. These predicted differences were shown to be statistically significant by comparing their accessible surface areas. The three programs were then used to predict the structures of three orphan proteins whose crystal structures had been solved, two of which display novel folds. Surprisingly, only for the protein which did not have a novel fold, and was taxonomically restricted, rather than being a true orphan, did all three algorithms predict very similar, high-quality structures, closely resembling the crystal structure. Finally, they were used to predict the structures of seven orphan proteins with well-identified biological functions, whose 3D structures are not known. Two proteins, which were predicted to be disordered based on their sequences, are predicted by all three structure algorithms to be extended structures. The other five were predicted to be compact structures with only two exceptions in the case of AlphaFold2. All three prediction algorithms make remarkably similar and high-quality predictions for one large protein, HCO_11565, from a nematode. It is conjectured that this is due to many homologs in the taxonomically restricted family of which it is a member, and to the fact that the Dali server revealed several nonrelated proteins with similar folds. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:Proteins:3.
Assuntos
Aprendizado Profundo , Sequência de Aminoácidos , Proteínas/química , Algoritmos , AminoácidosRESUMO
This special issue of the Journal of Neurochemistry, entitled "Cholinergic Mechanisms," presents 15 reviews and two original papers, which have been selected to cover the broad spectrum of topics and disciplines presented at the XVIth International Symposium on Cholinergic Mechanisms (ISCM-XVI), ranging from the molecular and the cellular to the clinical and the cognitive mechanisms of cholinergic transmission. The authors discuss recent developments in the field, for instance, the association of cholinergic transmission with a number of important neurological and neuromuscular diseases in the central and peripheral nervous systems.
Assuntos
Acetilcolina/metabolismo , Encéfalo/metabolismo , Neurônios Colinérgicos/metabolismo , Sistema Nervoso Periférico/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Colinérgicos/metabolismo , Colinérgicos/farmacologia , Neurônios Colinérgicos/efeitos dos fármacos , Humanos , Sistema Nervoso Periférico/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologiaRESUMO
The quaternary structures of the cholinesterases, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), are essential for their localization and function. Of practical importance, BChE is a promising therapeutic candidate for intoxication by organophosphate nerve agents and insecticides, and for detoxification of addictive substances. Efficacy of the recombinant enzyme hinges on its having a long circulatory half-life; this, in turn, depends strongly on its ability to tetramerize. Here, we used cryoelectron microscopy (cryo-EM) to determine the structure of the highly glycosylated native BChE tetramer purified from human plasma at 5.7 Å. Our structure reveals that the BChE tetramer is organized as a staggered dimer of dimers. Tetramerization is mediated by assembly of the C-terminal tryptophan amphiphilic tetramerization (WAT) helices from each subunit as a superhelical assembly around a central lamellipodin-derived oligopeptide with a proline-rich attachment domain (PRAD) sequence that adopts a polyproline II helical conformation and runs antiparallel. The catalytic domains within a dimer are asymmetrically linked to the WAT/PRAD. In the resulting arrangement, the tetramerization domain is largely shielded by the catalytic domains, which may contribute to the stability of the human BChE (HuBChE) tetramer. Our cryo-EM structure reveals the basis for assembly of the native tetramers and has implications for the therapeutic applications of HuBChE. This mode of tetramerization is seen only in the cholinesterases but may provide a promising template for designing other proteins with improved circulatory residence times.
Assuntos
Acetilcolinesterase/química , Butirilcolinesterase/química , Microscopia Crioeletrônica/métodos , Conformação Proteica , Multimerização Proteica , Cristalografia por Raios X , HumanosRESUMO
Over recent decades, crystallographic software for data processing and structure refinement has improved dramatically, resulting in more accurate and detailed crystal structures. It is, therefore, sometimes valuable to have a second look at "old" diffraction data, especially when earlier interpretation of the electron density maps was rather difficult. Here, we present updated crystal structures of Drosophila melanogaster acetylcholinesterase (DmAChE) originally published in [Harel et al., Prot Sci (2000) 9:1063-1072], which reveal features previously unnoticed. Thus, previously unmodeled density in the native active site can be interpreted as stable acetylation of the catalytic serine. Similarly, a strong density in the DmAChE/ZA complex originally attributed to a sulfate ion is better interpreted as a small molecule that is covalently bound. This small molecule can be modeled as either a propionate or a glycinate. The complex is reminiscent of the carboxylate butyrylcholinesterase complexes observed in crystal structures of human butyrylcholinesterases from various sources, and demonstrates the remarkable ability of cholinesterases to stabilize covalent complexes with carboxylates. A very strong peak of density (10 σ) at covalent distance from the Cß of the catalytic serine is present in the DmAChE/ZAI complex. This can be undoubtedly attributed to an iodine atom, suggesting an unanticipated iodo/hydroxyl exchange between Ser238 and the inhibitor, possibly driven by the intense X-ray irradiation. Finally, the binding of tacrine-derived inhibitors, such as ZA (1DX4) or the iodinated analog, ZAI (1QON) results in the appearance of an open channel that connects the base of the active-site gorge to the solvent. This channel, which arises due to the absence of the conserved tyrosine present in vertebrate cholinesterases, could be exploited to design inhibitors specific to insect cholinesterases. The present study demonstrates that updated processing of older diffraction images, and the re-refinement of older diffraction data, can produce valuable information that could not be detected in the original analysis, and strongly supports the preservation of the diffraction images in public data banks.
Assuntos
Acetilcolinesterase/química , Inibidores da Colinesterase/química , Drosophila melanogaster/enzimologia , Desenho de Fármacos , Inseticidas/química , Tacrina/química , Animais , Sítios de Ligação , Catálise , Domínio Catalítico , Drosophila melanogaster/efeitos dos fármacos , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Conformação Proteica , Relação Estrutura-AtividadeRESUMO
Both transmembrane and extracellular cues, one of which is collagen XIII, regulate the formation and function of the neuromuscular synapse, and their absence results in myasthenia. We show that the phenotypical changes in collagen XIII knock-out mice are milder than symptoms in human patients, but the Col13a1-/- mice recapitulate major muscle findings of congenital myasthenic syndrome type 19 and serve as a disease model. In the lack of collagen XIII neuromuscular synapses do not reach full size, alignment, complexity and function resulting in reduced muscle strength. Collagen XIII is particularly important for the preterminal integrity, and when absent, destabilization of the motor nerves results in muscle regeneration and in atrophy especially in the case of slow muscle fibers. Collagen XIII was found to affect synaptic integrity through binding the ColQ tail of acetylcholine esterase. Although collagen XIII is a muscle-bound transmembrane molecule, it also undergoes ectodomain shedding to become a synaptic basal lamina component. We investigated the two forms' roles by novel Col13a1tm/tm mice in which ectodomain shedding is impaired. While postsynaptic maturation, terminal branching and neurotransmission was exaggerated in the Col13a1tm/tm mice, the transmembrane form's presence sufficed to prevent defects in transsynaptic adhesion, Schwann cell invagination/retraction, vesicle accumulation and acetylcholine receptor clustering and acetylcholinesterase dispersion seen in the Col13a1-/- mice, pointing to the transmembrane form as the major conductor of collagen XIII effects. Altogether, collagen XIII secures postsynaptic, synaptic and presynaptic integrity, and it is required for gaining and maintaining normal size, complexity and functional capacity of the neuromuscular synapse.
Assuntos
Colágeno Tipo XIII/genética , Colágeno Tipo XIII/metabolismo , Sinapses/metabolismo , Acetilcolinesterase/metabolismo , Animais , Membrana Basal/metabolismo , Adesão Celular/fisiologia , Colágeno/metabolismo , Camundongos , Camundongos Knockout , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Junção Neuromuscular/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Colinérgicos/metabolismo , Transmissão SinápticaRESUMO
A new series of 3-hydroxy-2-pyridine aldoxime compounds have been designed, synthesised and tested in vitro, in silico, and ex vivo as reactivators of human acetylcholinesterase (hAChE) and butyrylcholinesterase (hBChE) inhibited by organophosphates (OPs), for example, VX, sarin, cyclosarin, tabun, and paraoxon. The reactivation rates of three oximes (16-18) were determined to be greater than that of 2-PAM and comparable to that of HI-6, two pyridinium aldoximes currently used by the armies of several countries. The interactions important for a productive orientation of the oxime group within the OP-inhibited enzyme have been clarified by molecular-modelling studies, and by the resolution of the crystal structure of the complex of oxime 17 with Torpedo californica AChE. Blood-brain barrier penetration was predicted for oximes 15-18 based on their physicochemical properties and an in vitro brain membrane permeation assay. Among the evaluated compounds, two morpholine-3-hydroxypyridine aldoxime conjugates proved to be promising reactivators of OP-inhibited cholinesterases. Moreover, efficient ex vivo reactivation of phosphylated native cholinesterases by selected oximes enabled significant hydrolysis of VX, sarin, paraoxon, and cyclosarin in whole human blood, which indicates that the oximes have scavenging potential.
Assuntos
Barreira Hematoencefálica/metabolismo , Butirilcolinesterase/metabolismo , Organofosfatos/química , Oximas/química , Barreira Hematoencefálica/química , Butirilcolinesterase/química , Humanos , Relação Estrutura-AtividadeRESUMO
Symptomatic treatment of myasthenia gravis is based on the use of peripherally-acting acetylcholinesterase (AChE) inhibitors that, in some cases, must be discontinued due to the occurrence of a number of side-effects. Thus, new AChE inhibitors are being developed and investigated for their potential use against this disease. Here, we have explored two alternative approaches to get access to peripherally-acting AChE inhibitors as new agents against myasthenia gravis, by structural modification of the brain permeable anti-Alzheimer AChE inhibitors tacrine, 6-chlorotacrine, and huprine Y. Both quaternization upon methylation of the quinoline nitrogen atom, and tethering of a triazole ring, with, in some cases, the additional incorporation of a polyphenol-like moiety, result in more polar compounds with higher inhibitory activity against human AChE (up to 190-fold) and butyrylcholinesterase (up to 40-fold) than pyridostigmine, the standard drug for symptomatic treatment of myasthenia gravis. The novel compounds are furthermore devoid of brain permeability, thereby emerging as interesting leads against myasthenia gravis.
Assuntos
Acetilcolinesterase/metabolismo , Aminoacridinas/síntese química , Aminoquinolinas/síntese química , Inibidores da Colinesterase/síntese química , Acetilcolinesterase/química , Aminoacridinas/química , Aminoacridinas/farmacologia , Aminoquinolinas/química , Aminoquinolinas/farmacologia , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Regulação para Baixo , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/química , Humanos , Modelos Moleculares , Estrutura Molecular , Miastenia Gravis/tratamento farmacológico , Miastenia Gravis/enzimologia , Relação Estrutura-Atividade , Tacrina/químicaRESUMO
This review focuses on several recent developments concerning structure-function relationships in vertebrate acetylcholinesterase. These include studies on high-resolution structures of human acetylcholinesterase and its complexes; the first crystal structure of a snake venom acetylcholinesterase, in which open and closed states of the 'back door' are visualized; a powerful algorithm for redesigning proteins for enhanced expression in prokaryotic systems, as applied to human acetylcholinesterase, which has hitherto been an intractable target; in situ implementation of 'click chemistry' in crystalline acetylcholinesterase, which yields novel insights into the steric and dynamic changes involved in the reaction within the active-site gorge; and a study that demonstrates the effect of crystallization conditions on ligand alignment within a protein complex, in this case the methylene blue-Torpedo californica acetylcholinesterase complex, which highlights the relevance of the precipitant employed to structure-based drug design. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.
Assuntos
Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Desenho de Fármacos , Ligantes , Conformação Proteica/efeitos dos fármacos , Animais , Humanos , Modelos MolecularesRESUMO
The neurochemistry community at large and the Advisory Board of The International Symposia on Cholinergic Mechanisms mourn the loss of Alexander George Karczmar, the elected Honorary President of these international symposia, who passed away peacefully in his Chicago home at the age of 100 on August 17, 2017. For many of us Alex was the essence of cholinergic signaling, and personified its versatile power to send messages between the brain and the peripheral tissues and organs, and to connect between body and soul.
Assuntos
Colinérgicos/metabolismo , Neurônios Colinérgicos/metabolismo , Neuroquímica/história , História do Século XX , História do Século XXI , Estados UnidosRESUMO
This special issue is a companion to the meeting 'XVth International Symposium on Cholinergic Mechanisms', and is edited by Israel Silman, Marco Prado and Pascale Marchot. In the review articles, renowned researchers in the field capture key mechanisms of cholinergic neurotransmission, from genomic amplification of cholinesterase genes, splicing and post-translational modifications; features of the neuromuscular junction, implications of cholinergic circuitry that are relevant to addiction, anxiety and mood, to preclinical models, protein biomarkers, and clinical findings that are relevant to pathology, for example, developmental neurotoxicity. The broad variety of features reflects the impact of cholinergic mechanisms on many physiological events and emphasizes the importance of research in this area. This is the Preface for the special issue XVth International Symposium on Cholinergic Mechanisms.
Assuntos
Acetilcolina/metabolismo , Colinérgicos/farmacologia , Junção Neuromuscular/metabolismo , Síndromes Neurotóxicas/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Animais , Comportamento Aditivo/tratamento farmacológico , Comportamento Aditivo/fisiopatologia , Humanos , Síndromes Neurotóxicas/tratamento farmacológico , Transmissão Sináptica/fisiologiaRESUMO
Functions of biomolecules, in particular enzymes, are usually modulated by structural fluctuations. This is especially the case in a gated diffusion-controlled reaction catalyzed by an enzyme such as acetylcholinesterase. The catalytic triad of acetylcholinesterase is located at the bottom of a long and narrow gorge, but it catalyzes the extremely rapid hydrolysis of the neurotransmitter, acetylcholine, with a reaction rate close to the diffusion-controlled limit. Computational modeling and simulation have produced considerable advances in exploring the dynamical and conformational properties of biomolecules, not only aiding in interpreting the experimental data, but also providing insights into the internal motions of the biomolecule at the atomic level. Given the remarkably high catalytic efficiency and the importance of acetylcholinesterase in drug development, great efforts have been made to understand the dynamics associated with its functions by use of various computational methods. Here, we present a comprehensive overview of recent computational studies on acetylcholinesterase, expanding our views of the enzyme from a microstate of a single structure to conformational ensembles, strengthening our understanding of the integration of structure, dynamics and function associated with the enzyme, and promoting the structure-based and/or mechanism-based design of new inhibitors for it.
Assuntos
Acetilcolinesterase/química , Simulação por Computador , Modelos Moleculares , Acetilcolinesterase/metabolismo , Sítios de Ligação , Domínio Catalítico , Difusão , Hidrólise , Cinética , Estrutura Molecular , Ligação Proteica , Conformação ProteicaRESUMO
The ability to redesign enzymes to catalyze noncognate chemical transformations would have wide-ranging applications. We developed a computational method for repurposing the reactivity of metalloenzyme active site functional groups to catalyze new reactions. Using this method, we engineered a zinc-containing mouse adenosine deaminase to catalyze the hydrolysis of a model organophosphate with a catalytic efficiency (k(cat)/K(m)) of ~10(4) M(-1) s(-1) after directed evolution. In the high-resolution crystal structure of the enzyme, all but one of the designed residues adopt the designed conformation. The designed enzyme efficiently catalyzes the hydrolysis of the R(P) isomer of a coumarinyl analog of the nerve agent cyclosarin, and it shows marked substrate selectivity for coumarinyl leaving groups. Computational redesign of native enzyme active sites complements directed evolution methods and offers a general approach for exploring their untapped catalytic potential for new reactivities.
Assuntos
Adenosina Desaminase/metabolismo , Simulação por Computador , Desenho Assistido por Computador , Metaloproteínas/metabolismo , Compostos Organofosforados/metabolismo , Zinco/química , Adenosina Desaminase/química , Animais , Biocatálise , Domínio Catalítico , Biologia Computacional , Hidrólise , Metaloproteínas/química , Camundongos , Modelos Moleculares , Conformação Molecular , Compostos Organofosforados/química , Zinco/metabolismoRESUMO
Organophosphate nerve agents are extremely lethal compounds. Rapid in vivo organophosphate clearance requires bioscavenging enzymes with catalytic efficiencies of >10(7) (M(-1) min(-1)). Although serum paraoxonase (PON1) is a leading candidate for such a treatment, it hydrolyzes the toxic S(p) isomers of G-agents with very slow rates. We improved PON1's catalytic efficiency by combining random and targeted mutagenesis with high-throughput screening using fluorogenic analogs in emulsion compartments. We thereby enhanced PON1's activity toward the coumarin analog of S(p)-cyclosarin by â¼10(5)-fold. We also developed a direct screen for protection of acetylcholinesterase from inactivation by nerve agents and used it to isolate variants that degrade the toxic isomer of the coumarin analog and cyclosarin itself with k(cat)/K(M) â¼ 10(7) M(-1) min(-1). We then demonstrated the in vivo prophylactic activity of an evolved variant. These evolved variants and the newly developed screens provide the basis for engineering PON1 for prophylaxis against other G-type agents.
Assuntos
Substâncias para a Guerra Química/intoxicação , Evolução Molecular Direcionada , Hidrolases/metabolismo , Intoxicação/prevenção & controle , Acetilcolinesterase/metabolismo , Arildialquilfosfatase/metabolismo , Biocatálise , Emulsões , Hidrolases/química , HidróliseRESUMO
The principal role of AChE (acetylcholinesterase) is termination of impulse transmission at cholinergic synapses by rapid hydrolysis of the neurotransmitter acetylcholine. The active site of AChE is near the bottom of a long and narrow gorge lined with aromatic residues. It contains a CAS (catalytic 'anionic' subsite) and a second PAS (peripheral 'anionic' site), the gorge mouth, both of which bind acetylcholine via π-cation interactions, primarily with two conserved tryptophan residues. It was shown previously that generation of (1)O(2) by illumination of MB (Methylene Blue) causes irreversible inactivation of TcAChE (Torpedo californica AChE), and suggested that photo-oxidation of tryptophan residues might be responsible. In the present study, structural modification of the TcAChE tryptophan residues induced by MB-sensitized oxidation was investigated using anti-N-formylkynurenine antibodies and MS. From these analyses, we determined that N-formylkynurenine derivatives were specifically produced from Trp(84) and Trp(279), present at the CAS and PAS respectively. Peptides containing these two oxidized tryptophan residues were not detected when the competitive inhibitors, edrophonium and propidium (which should displace MB from the gorge) were present during illumination, in agreement with their efficient protection against the MB-induced photo-inactivation. Thus the bound MB elicited selective action of (1)O(2) on the tryptophan residues facing on to the water-filled active-site gorge. The findings of the present study thus demonstrate the localized action and high specificity of MB-sensitized photo-oxidation of TcAChE, as well as the value of this enzyme as a model system for studying the mechanism of action and specificity of photosensitizing agents.
Assuntos
Acetilcolinesterase/química , Inibidores da Colinesterase/farmacologia , Azul de Metileno/metabolismo , Fármacos Fotossensibilizantes/metabolismo , Oxigênio Singlete/farmacologia , Torpedo/metabolismo , Acetilcolinesterase/efeitos dos fármacos , Animais , Ligação Competitiva , Domínio Catalítico , Inibidores da Colinesterase/química , Edrofônio/metabolismo , Edrofônio/farmacologia , Órgão Elétrico/enzimologia , Hidrólise , Cinurenina/análogos & derivados , Cinurenina/química , Espectrometria de Massas , Azul de Metileno/química , Azul de Metileno/efeitos da radiação , Modelos Moleculares , Oxirredução , Fotoquímica , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/efeitos da radiação , Propídio/metabolismo , Propídio/farmacologia , Conformação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato , Triptofano/química , ÁguaRESUMO
A bacterial phosphotriesterase was employed as an experimental paradigm to examine the effects of multiple factors, such as the molecular constructs, the ligands used during protein expression and purification, the crystallization conditions and the space group, on the visualization of molecular complexes of ligands with a target enzyme. In this case, the ligands used were organophosphates that are fragments of the nerve agents and insecticides on which the enzyme acts as a bioscavenger. 12 crystal structures of various phosphotriesterase constructs obtained by directed evolution were analyzed, with resolutions of up to 1.38â Å. Both apo forms and holo forms, complexed with the organophosphate ligands, were studied. Crystals obtained from three different crystallization conditions, crystallized in four space groups, with and without N-terminal tags, were utilized to investigate the impact of these factors on visualizing the organophosphate complexes of the enzyme. The study revealed that the tags used for protein expression can lodge in the active site and hinder ligand binding. Furthermore, the space group in which the protein crystallizes can significantly impact the visualization of bound ligands. It was also observed that the crystallization precipitants can compete with, and even preclude, ligand binding, leading to false positives or to the incorrect identification of lead drug candidates. One of the co-crystallization conditions enabled the definition of the spaces that accommodate the substituents attached to the P atom of several products of organophosphate substrates after detachment of the leaving group. The crystal structures of the complexes of phosphotriesterase with the organophosphate products reveal similar short interaction distances of the two partially charged O atoms of the P-O bonds with the exposed ß-Zn2+ ion and the buried α-Zn2+ ion. This suggests that both Zn2+ ions have a role in stabilizing the transition state for substrate hydrolysis. Overall, this study provides valuable insights into the challenges and considerations involved in studying the crystal structures of ligand-protein complexes, highlighting the importance of careful experimental design and rigorous data analysis in ensuring the accuracy and reliability of the resulting phosphotriesterase-organophosphate structures.
Assuntos
Hidrolases de Triester Fosfórico , Hidrolases de Triester Fosfórico/química , Hidrolases de Triester Fosfórico/metabolismo , Cristalização , Ligantes , Reprodutibilidade dos Testes , Organofosfatos , Cristalografia por Raios XRESUMO
Acid-ß-glucosidase (GCase, EC3.2.1.45), the lysosomal enzyme which hydrolyzes the simple glycosphingolipid, glucosylceramide (GlcCer), is encoded by the GBA1 gene. Biallelic mutations in GBA1 cause the human inherited metabolic disorder, Gaucher disease (GD), in which GlcCer accumulates, while heterozygous GBA1 mutations are the highest genetic risk factor for Parkinson's disease (PD). Recombinant GCase (e.g., Cerezyme® ) is produced for use in enzyme replacement therapy for GD and is largely successful in relieving disease symptoms, except for the neurological symptoms observed in a subset of patients. As a first step toward developing an alternative to the recombinant human enzymes used to treat GD, we applied the PROSS stability-design algorithm to generate GCase variants with enhanced stability. One of the designs, containing 55 mutations compared to wild-type human GCase, exhibits improved secretion and thermal stability. Furthermore, the design has higher enzymatic activity than the clinically used human enzyme when incorporated into an AAV vector, resulting in a larger decrease in the accumulation of lipid substrates in cultured cells. Based on stability-design calculations, we also developed a machine learning-based approach to distinguish benign from deleterious (i.e., disease-causing) GBA1 mutations. This approach gave remarkably accurate predictions of the enzymatic activity of single-nucleotide polymorphisms in the GBA1 gene that are not currently associated with GD or PD. This latter approach could be applied to other diseases to determine risk factors in patients carrying rare mutations.
Assuntos
Celulases , Doença de Gaucher , Doença de Parkinson , Humanos , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Doença de Parkinson/genética , Heterozigoto , Mutação , Celulases/genéticaRESUMO
ß-Secretase (ß-site amyloid precursor protein-cleaving enzyme 1; BACE1) is a transmembrane aspartic protease that cleaves the ß-amyloid precursor protein en route to generation of the amyloid ß-peptide (Aß) that is believed to be responsible for the Alzheimer's disease amyloid cascade. It is thus a prime target for the development of inhibitors which may serve as drugs in the treatment and/or prevention of Alzheimer's disease. In the following determination of the crystal structures of both apo and complexed BACE1, structural analysis of all crystal structures of BACE1 deposited in the PDB and molecular dynamics (MD) simulations of monomeric and `dimeric' BACE1 were used to study conformational changes in the active-site region of the enzyme. It was observed that a flap able to cover the active site is the most flexible region, adopting multiple conformational states in the various crystal structures. Both the presence or absence of an inhibitor within the active site and the crystal packing are shown to influence the flap's conformation. An open conformation of the flap is mostly observed in the apo structures, while direct hydrogen-bonding interaction between main-chain atoms of the flap and the inhibitor is a prerequisite for the flap to adopt a closed conformation in the crystal structures of complexes. Thus, a systematic study of the conformational flexibility of the enzyme may not only contribute to structure-based drug design of BACE1 inhibitors and of other targets with flexible conformations, but may also help to better understand the mechanistic events associated with the binding of substrates and inhibitors to the enzyme.
Assuntos
Secretases da Proteína Precursora do Amiloide/química , Ácido Aspártico Endopeptidases/química , Domínio Catalítico , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Quaternária de ProteínaRESUMO
Over the next few years, structural proteomics will grapple with the problem of visualizing increasingly elaborate structures, from the atomic details of protein structures up to subcellular structures and the whole cell. A recent EU workshop addressed the question of what experimental and theoretical approaches, technologies and infrastructures this will demand.