Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Breast Cancer Res Treat ; 188(1): 43-52, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34101078

RESUMO

PURPOSE: Therapeutic efficacy of hormonal therapies to target estrogen receptor (ER)-positive breast cancer is limited by the acquisition of ligand-independent ESR1 mutations, which confer treatment resistance to aromatase inhibitors (AIs). Monitoring for the emergence of such mutations may enable individualized therapy. We thus assessed CTC- and ctDNA-based detection of ESR1 mutations with the aim of evaluating non-invasive approaches for the determination of endocrine resistance. PATIENTS AND METHODS: In a prospective cohort of 55 women with hormone receptor-positive metastatic breast cancer, we isolated circulating tumor cells (CTCs) and developed a high-sensitivity method for the detection of ESR1 mutations in these CTCs. In patients with sufficient plasma for the simultaneous extraction of circulating tumor DNA (ctDNA), we performed a parallel analysis of ESR1 mutations using multiplex droplet digital PCR (ddPCR) and examined the agreement between these two platforms. Finally, we isolated single CTCs from a subset of these patients and reviewed RNA expression to explore alternate methods of evaluating endocrine responsiveness. RESULTS: High-sensitivity ESR1 sequencing from CTCs revealed mono- and oligoclonal mutations in 22% of patients. These were concordant with plasma DNA sequencing in 95% of cases. Emergence of ESR1 mutations was correlated both with time to metastatic relapse and duration of AI therapy following such recurrence. The Presence of an ESR1 mutation, compared to ESR1 wild type, was associated with markedly shorter Progression-Free Survival on AI-based therapies (p = 0.0006), but unaltered to other non-AI-based therapies (p = 0.73). Compared with ESR1 mutant cases, AI-resistant CTCs with wild-type ESR1 showed an elevated ER-coactivator RNA signature, consistent with their predicted response to second-line hormonal therapies. CONCLUSION: Blood-based serial monitoring may guide the selection of precision therapeutics for women with AI-resistant ER-positive breast cancer.


Assuntos
Neoplasias da Mama , DNA Tumoral Circulante , Células Neoplásicas Circulantes , Receptor alfa de Estrogênio/genética , Feminino , Genótipo , Humanos , Mutação , Recidiva Local de Neoplasia , Estudos Prospectivos
2.
Cancer Discov ; 8(10): 1286-1299, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30104333

RESUMO

The multiplicity of new therapies for breast cancer presents a challenge for treatment selection. We describe a 17-gene digital signature of breast circulating tumor cell (CTC)-derived transcripts enriched from blood, enabling high-sensitivity early monitoring of response. In a prospective cohort of localized breast cancer, an elevated CTC score after three cycles of neoadjuvant therapy is associated with residual disease at surgery (P = 0.047). In a second prospective cohort with metastatic breast cancer, baseline CTC score correlates with overall survival (P = 0.02), as does persistent CTC signal after 4 weeks of treatment (P = 0.01). In the subset with estrogen receptor (ER)-positive disease, failure to suppress ER signaling within CTCs after 3 weeks of endocrine therapy predicts early progression (P = 0.008). Drug-refractory ER signaling within CTCs overlaps partially with presence of ESR1 mutations, pointing to diverse mechanisms of acquired endocrine drug resistance. Thus, CTC-derived digital RNA signatures enable noninvasive pharmacodynamic measurements to inform therapy in breast cancer.Significance: Digital analysis of RNA from CTCs interrogates treatment responses of both localized and metastatic breast cancer. Quantifying CTC-derived ER signaling during treatment identifies patients failing to respond to ER suppression despite having functional ESR1. Thus, noninvasive scoring of CTC-RNA signatures may help guide therapeutic choices in localized and advanced breast cancer. Cancer Discov; 8(10); 1286-99. ©2018 AACR. This article is highlighted in the In This Issue feature, p. 1195.


Assuntos
Neoplasias da Mama/genética , Células Neoplásicas Circulantes/metabolismo , RNA/metabolismo , Neoplasias da Mama/metabolismo , Feminino , Humanos , Metástase Neoplásica , Células Neoplásicas Circulantes/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA