Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Physiol Plant ; 168(2): 456-472, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31600428

RESUMO

Soybean is the most widely grown oilseed in the world. It is an important source of protein and oil which are derived from its seeds. Drought stress is a major constraint to soybean yields. Finding alternative methods to mitigate the water stress for soybean is useful to maintain adequate crop yields. The aim of this study was to evaluate the morpho-physiological, biochemical and metabolic changes in soybean plants in two ontogenetic stages, under exposure to water deficit and treatment with zinc sulphate (ZS), potassium phosphite (PP) or hydrogen sulphide (HS). We carried out two independent experiments in the V4 and R1 development stages consisting of the following treatments: well-watered control (WW, 100% maximum water holding capacity, MWHC), water deficit (WD, 50% MWHC), PP + WW, PP + WD, HS + WW, HS + WD, ZS + WW and ZS + WD. The experimental design consisted of randomized blocks with eight treatments with five replicates. Morphological, physiological and metabolic analyses were performed 8 days after the start of the treatments for both experiments. We identified two tolerance mechanisms acting in response to compound application during water stress: the first involved the upregulation of antioxidant enzyme activity and the second involved the accumulation of soluble sugars, free amino acids and proline to facilitate osmotic adjustment. Both mechanisms are related to the maintenance of the photosynthetic parameters and cell membrane integrity. This report suggests the potential agricultural use of these compounds to mitigate drought effects in soybean plants.


Assuntos
Glycine max/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Fosfitos/farmacologia , Compostos de Potássio/farmacologia , Estresse Fisiológico , Sulfato de Zinco/farmacologia , Secas , Folhas de Planta , Glycine max/fisiologia , Água
2.
Plants (Basel) ; 13(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38931015

RESUMO

Raphanus sativus L. is a potential source of raw material for biodiesel fuel due to the high oil content in its grains. In Brazil, this species is cultivated in the low rainfall off-season, which limits the productivity of the crop. The present study investigated the effects of water restriction on the physiological and biochemical responses, production components, and oil quality of R. sativus at different development stages. The treatments consisted of 100% water replacement (control), 66%, and 33% of field capacity during the phenological stages of vegetative growth, flowering, and grain filling. We evaluated characteristics of water relations, gas exchange, chlorophyll a fluorescence, chloroplast pigment, proline, and sugar content. The production components and chemical properties of the oil were also determined at the end of the harvest cycle. Drought tolerance of R. sativus was found to be mediated primarily during the vegetative growth stage by changes in photosynthetic metabolism, stability of photochemical efficiency, increased proline concentrations, and maintenance of tissue hydration. Grain filling was most sensitive to water limitation and showed a reduction in yield and oil content. However, the chemical composition of the oil was not altered by the water deficit. Our data suggest that R. sativus is a drought-tolerant species.

3.
Plant Physiol Biochem ; 129: 310-322, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29925047

RESUMO

Crambe abyssinica is widely cultivated in the off-season in the Midwest region of Brazil with great potential for biodeisel production. Low precipitation is characteristic of this region, which can drastically affect the productivity of C. abyssinica. Signaling molecules, such as nitric oxide (NO), can potentially alleviate the effects of water stress on plants. Here we test whether nitric oxide, applied by donor sodium nitroprusside (SNP), can alleviate the occurrence of water deficit damages in Crambe plants and maintain physiological and biochemical processes. Crambe plants were sprayed with three doses of SNP (0, 75, and 150 µM) and were submitted to two water levels (100% and 50% of the maximum water holding capacity). After 32 and 136 h, leaves were analyzed to evaluate the concentration of NO, water relations, gas exchange, chlorophyll a fluorescence, chloroplastidic pigments, proline, malondialdehyde, hydrogen peroxide, superoxide anions, and the antioxidant enzymes activity. Application of SNP allowed the maintenance of gas exchange, chlorophyll fluorescence parameters, and activities of antioxidant enzymes in plants exposed to water deficit, as well as increased the concentration of NO, proline, chloroplastidic pigments and osmotic potential. The application of SNP also decreased the concentration of malondialdehyde and reactive oxygen species in plants submitted to water deficit. Thus, the application of SNP prevented the occurrence of symptoms of water deficit in Crambe plants, maintaining the physiological and biochemical responses at reference levels, even under stress conditions.


Assuntos
Crambe (Planta)/metabolismo , Óxido Nítrico/metabolismo , Clorofila A/metabolismo , Crambe (Planta)/efeitos dos fármacos , Desidratação , Relação Dose-Resposta a Droga , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Nitroprussiato/farmacologia , Pressão Osmótica/efeitos dos fármacos , Transpiração Vegetal/efeitos dos fármacos , Prolina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA