Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pest Manag Sci ; 80(8): 4006-4012, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527917

RESUMO

BACKGROUND: Toxins of Bacillus thuringiensis subsp. israelensis (Bti) are safer alternatives for controlling dipteran pests such as black flies and mosquitoes. The biting midge Culicoides sonorensis (Diptera: Ceratopogonidae) is an important pest of livestock in much of the United States and larval midges utilize semi-aquatic habitats which are permissive for Bti product application. Reports suggest that Bti products are ineffective at killing biting midges despite their taxonomic relation to black flies and mosquitoes. Here, we investigate the toxicity of a Bti-based commercial insecticide and its active ingredient in larval Culicoides sonorensis. A suspected mechanism of Bti tolerance is an acidic larval gut, and we used a pH indicator dye to examine larval Culicoides sonorensis gut pH after exposure to Bti. RESULTS: The lethal concentration to kill 90% (LC90) of larvae of the commercial product (386 mg/L) was determined to be almost 10 000 times more than that of some mosquito species, and no concentration of active ingredient tested achieved 50% larval mortality. The larval gut was found to be more acidic after exposure to Bti which inhibits Bti toxin activity. By comparison, 100% mortality was achieved in larval Aedes aegypti at the product's label rate for this species and mosquito larvae had alkaline guts regardless of treatment. Altering the larval rearing water to alkaline conditions enhanced Bti efficacy when using the active ingredient. CONCLUSION: We conclude that Bti is not practical for larval Culicoides sonorensis control at the same rates as mosquitos but show that alterations or additives to the environment could make the products more effective. © 2024 Society of Chemical Industry.


Assuntos
Ceratopogonidae , Trato Gastrointestinal , Larva , Animais , Ceratopogonidae/efeitos dos fármacos , Ceratopogonidae/fisiologia , Concentração de Íons de Hidrogênio , Larva/crescimento & desenvolvimento , Larva/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Bacillus thuringiensis/química , Inseticidas/farmacologia , Toxinas de Bacillus thuringiensis
2.
Comp Med ; 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438127

RESUMO

This corrects the article DOI: 10.30802/AALAS-CM-23-000037
When the above article was first published in the Vol 3 No 6 (December 2023) issue of Comparative Medicine, figure images were incorrectly associated with the figure legends. The correct version of this article has been reprinted in full in volume 74, issue 1 of the February issue of Comparative Medicine.
The publisher apologizes for this error and any inconvenience caused.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA