Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanoscale ; 16(27): 12923-12933, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38805074

RESUMO

The role of defects in two-dimensional semiconductors and how they affect the intrinsic properties of these materials have been a widely researched topic over the past few decades. Optical characterization techniques such as photoluminescence and Raman spectroscopies are important tools to probe the physical properties of semiconductors and the impact of defects. However, confocal optical techniques present a spatial resolution limitation lying in a µm-scale, which can be overcome by the use of near-field optical measurements. Here, we use tip-enhanced photoluminescence and Raman spectroscopies to unveil the nanoscale optical properties of grown MoS2 monolayers, revealing that the impact of doping and strain can be disentangled by the combination of both techniques. A noticeable enhancement of the exciton peak intensity corresponding to trion emission quenching is observed at narrow regions down to a width of 47 nm at grain boundaries related to doping effects. Besides, localized strain fields inside the sample lead to non-uniformities in the intensity and energy position of photoluminescence peaks. Finally, two distinct MoS2 samples present different nano-optical responses at their edges associated with opposite strains. The edge of the first sample shows a photoluminescence intensity enhancement and energy blueshift corresponding to a frequency blueshift for E2g and 2LA Raman modes. In contrast, the other sample displays a photoluminescence energy redshift and frequency red shifts for E2g and 2LA Raman modes at their edges. Our work highlights the potential of combining tip-enhanced photoluminescence and Raman spectroscopies to probe localized strain fields and doping effects related to defects in two-dimensional materials.

2.
ACS Nano ; 12(5): 4312-4320, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29694776

RESUMO

Graphene is regarded as the toughest two-dimensional material (highest in-plane elastic properties) and, as a consequence, it has been employed/proposed as an ultrathin membrane in a myriad of microfluidic devices. Yet, an experimental investigation of eventual variations on the apparent elastic properties of a suspended graphene membrane in contact with air or water is still missing. In this work, the mechanical response of suspended monolayer graphene membranes on a microfluidic platform is investigated via scanning probe microscopy experiments. A high elastic modulus is measured for the membrane when the platform is filled with air, as expected. However, a significant apparent softening of graphene is observed when water fills the microfluidic system. Through molecular dynamics simulations and a phenomenological model, we associate such softening to a water-induced uncrumpling process of the suspended graphene membrane. This result may bring substantial modifications on the design and operation of microfluidic devices which exploit pressure application on graphene membranes.

3.
ACS Nano ; 7(8): 6597-604, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23859671

RESUMO

We probe electron and hole mobilities in bilayer graphene under exposure to molecular oxygen. We find that the adsorbed oxygen reduces electron mobilities and increases hole mobilities in a reversible and activated process. Our experimental results indicate that hole mobilities increase due to the screening of long-range scatterers by oxygen molecules trapped between the graphene and the substrate. First principle calculations show that oxygen molecules induce resonant states close to the charge neutrality point. Electron coupling with such resonant states reduces the electron mobilities, causing a strong asymmetry between electron and hole transport. Our work demonstrates the importance of short-range scattering due to adsorbed species in the electronic transport in bilayer graphene on SiO2 substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA