Assuntos
Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes , Tratamento Farmacológico da COVID-19 , COVID-19 , Farmacorresistência Viral , SARS-CoV-2 , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Neutralizantes/efeitos adversos , Anticorpos Neutralizantes/farmacologia , COVID-19/genética , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Humanos , Mutação , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genéticaRESUMO
Salmonella enterica serovar Typhi (S. Typhi) causes typhoid fever and, in some cases, chronic carriage after resolution of acute disease. This study examined sequential isolates of S. Typhi from a single host with persistent asymptomatic infection. These isolates, along with another S. Typhi isolate recovered from a household contact with typhoid fever, were subjected to whole genome sequencing and analysis. In addition, direct sequencing of the bile fluid from the host with persistent infection was also performed. Comparative analysis of isolates revealed three sub-populations of S. Typhi with distinct genetic patterns. Metagenomic sequencing recognised only two of the three sub-populations within the bile fluid. The detection and investigation of insertion sequences IS10R and associated deletions complemented analysis of single nucleotide polymorphisms. These findings improve our understanding of within-host dynamics of S. Typhi in cases of persistent infection and inform epidemiological investigations of transmission events associated with chronic carriers.
Assuntos
Salmonella typhi , Febre Tifoide , Humanos , Salmonella typhi/genética , Metagenômica , Infecção Persistente , Sequenciamento Completo do GenomaRESUMO
Here, this report presents two genomes of Vibrio cholerae O1 serotype Ogawa, recovered from cholera cases in Australia linked to travel to Pakistan in 2022. Their multidrug-resistant genotype represents the current activity of cholera within the seventh pandemic. One of the genome sequences was assembled using both short- and long-read sequences.
RESUMO
A major outbreak of the globally significant Salmonella Enteritidis foodborne pathogen was identified within a large clinical data set by a program of routine WGS of clinical presentations of salmonellosis in New South Wales, Australia. Pangenome analysis helped to quantify and isolate prophage content within the accessory partition of the pangenome. A prophage similar to Gifsy-1 (henceforth GF-1L) was found to occur in all isolates of the outbreak core SNP cluster, and in three other isolates. Further analysis revealed that the GF-1L prophage carried the gogB virulence factor. These observations suggest that GF-1L may be an important marker of virulence for S. Enteritidis population screening and, that anti-inflammatory, gogB-mediated virulence currently associated with Salmonella Typhimurium may also be displayed by S. Enteritidis. IMPORTANCE We examined 5 years of genomic and epidemiological data for the significant global foodborne pathogen, Salmonella enterica. Although Salmonella enterica subspecies enterica serovar Enteritidis (S. Enteritidis) is the leading cause of salmonellosis in the USA and Europe, prior to 2018 it was not endemic in the southern states of Australia. However, in 2018 a large outbreak led to the endemicity of S. Enteritidis in New South Wales, Australia, and a unique opportunity to study this phenomenon. Using pangenome analysis we uncovered that this clone contained a Gifsy-1-like prophage harboring the known virulence factor gogB. The prophage reported has not previously been described in S. Enteritidis isolates.
RESUMO
Shigella sonnei causes shigellosis, a severe gastrointestinal illness that is sexually transmissible among men who have sex with men (MSM). Multidrug resistance in S. sonnei is common including against World Health Organisation recommended treatment options, azithromycin, and ciprofloxacin. Recently, an MSM-associated outbreak of extended-spectrum ß-lactamase producing, extensively drug resistant S. sonnei was reported in the United Kingdom. Here, we aimed to identify the genetic basis, evolutionary history, and international dissemination of the outbreak strain. Our genomic epidemiological analyses of 3,304 isolates from the United Kingdom, Australia, Belgium, France, and the United States of America revealed an internationally connected outbreak with a most recent common ancestor in 2018 carrying a low-fitness cost resistance plasmid, previously observed in travel associated sublineages of S. flexneri. Our results highlight the persistent threat of horizontally transmitted antimicrobial resistance and the value of continuing to work towards early and open international sharing of genomic surveillance data.
Assuntos
Minorias Sexuais e de Gênero , Shigella , Masculino , Humanos , Shigella sonnei/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Homossexualidade Masculina , Viagem , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade MicrobianaRESUMO
Shiga toxigenic Escherichia coli O157 is the leading cause of hemolytic uremic syndrome (HUS) worldwide. The frequencies of stx genotypes and the incidences of O157-related illness and HUS vary significantly between Argentina and Australia. Locus-specific polymorphism analysis revealed that lineage I/II (LI/II) E. coli O157 isolates were most prevalent in Argentina (90%) and Australia (88%). Argentinean LI/II isolates were shown to belong to clades 4 (28%) and 8 (72%), while Australian LI/II isolates were identified as clades 6 (15%), 7 (83%), and 8 (2%). Clade 8 was significantly associated with Shiga toxin bacteriophage insertion (SBI) type stx(2) (locus of insertion, argW) in Argentinean isolates (P < 0.0001). In Argentinean LI/II strains, stx(2) is carried by a prophage inserted at argW, whereas in Australian LI/II strains the argW locus is occupied by the novel stx(1) prophage. In both Argentinean and Australian LI/II strains, stx(2c) is almost exclusively carried by a prophage inserted at sbcB. However, alternative q(933)- or q(21)-related alleles were identified in the Australian stx(2c) prophage. Argentinean LI/II isolates were also distinguished from Australian isolates by the presence of the putative virulence determinant ECSP_3286 and the predominance of motile O157:H7 strains. Characteristics common to both Argentinean and Australian LI/II O157 strains included the presence of putative virulence determinants (ECSP_3620, ECSP_0242, ECSP_2687, ECSP_2870, and ECSP_2872) and the predominance of the tir255T allele. These data support further understanding of O157 phylogeny and may foster greater insight into the differential virulence of O157 lineages.
Assuntos
Colífagos/genética , Infecções por Escherichia coli/microbiologia , Escherichia coli O157/patogenicidade , Escherichia coli O157/virologia , Prófagos/genética , Toxina Shiga I/genética , Toxina Shiga II/genética , Argentina , Austrália , DNA Bacteriano/química , DNA Bacteriano/genética , Escherichia coli O157/genética , Escherichia coli O157/isolamento & purificação , Dados de Sequência Molecular , Análise de Sequência de DNA , Virulência , Fatores de Virulência/genéticaRESUMO
In this report, we describe a case where Gram-negative rods were isolated from a blood culture which subsequently presented a discordant Yersinia species result by MALDI-TOF. Rapid sequencing provided high-resolution identification of the isolate as Yersinia pseudotuberculosis , which was subsequently confirmed by biochemical tests.
RESUMO
Co-infections with different variants of SARS-CoV-2 are a key precursor to recombination events that are likely to drive SARS-CoV-2 evolution. Rapid identification of such co-infections is required to determine their frequency in the community, particularly in populations at-risk of severe COVID-19, which have already been identified as incubators for punctuated evolutionary events. However, limited data and tools are currently available to detect and characterise the SARS-CoV-2 co-infections associated with recognised variants of concern. Here we describe co-infection with the SARS-CoV-2 variants of concern Omicron and Delta in two epidemiologically unrelated adult patients with chronic kidney disease requiring maintenance haemodialysis. Both variants were co-circulating in the community at the time of detection. Genomic surveillance based on amplicon- and probe-based sequencing using short- and long-read technologies identified and quantified subpopulations of Delta and Omicron viruses in respiratory samples. These findings highlight the importance of integrated genomic surveillance in vulnerable populations and provide diagnostic pathways to recognise SARS-CoV-2 co-infection using genomic data.
Assuntos
COVID-19 , Coinfecção , Genômica , Humanos , SARS-CoV-2/genéticaRESUMO
The disease caused by Shiga toxin-producing Escherichia coli (STEC) remains a significant public health challenge globally, but the incidence of human STEC infections in Australia remains relatively low. This study examined the virulence characteristics and diversity of STEC isolates in the state of New South Wales between December 2017 and May 2020. Utilisation of both whole and core genome multi-locus sequence typing (MLST) allowed for the inference of genomic diversity and detection of isolates that were likely to be epidemiologically linked. The most common STEC serotype and stx subtype detected in this study were O157:H7 and stx 1a, respectively. A genomic scan of other virulence factors present in STEC suggested interplay between iron uptake system and virulence factors that mediate either iron release or countermeasures against host defence that could result in a reduction of stx 1a expression. This reduced expression of the dominant stx genotype could contribute to the reduced incidence of STEC-related illness in Australia. Genomic surveillance of STEC becomes an important part of public health response and ongoing interrogation of virulence factors in STEC offers additional insights for the public health risk assessment.
RESUMO
In January 2020, a novel betacoronavirus (family Coronaviridae), named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was identified as the etiological agent of a cluster of pneumonia cases occurring in Wuhan City, Hubei Province, China1,2. The disease arising from SARS-CoV-2 infection, coronavirus disease 2019 (COVID-19), subsequently spread rapidly causing a worldwide pandemic. Here we examine the added value of near real-time genome sequencing of SARS-CoV-2 in a subpopulation of infected patients during the first 10 weeks of COVID-19 containment in Australia and compare findings from genomic surveillance with predictions of a computational agent-based model (ABM). Using the Australian census data, the ABM generates over 24 million software agents representing the population of Australia, each with demographic attributes of an anonymous individual. It then simulates transmission of the disease over time, spreading from specific infection sources, using contact rates of individuals within different social contexts. We report that the prospective sequencing of SARS-CoV-2 clarified the probable source of infection in cases where epidemiological links could not be determined, significantly decreased the proportion of COVID-19 cases with contentious links, documented genomically similar cases associated with concurrent transmission in several institutions and identified previously unsuspected links. Only a quarter of sequenced cases appeared to be locally acquired and were concordant with predictions from the ABM. These high-resolution genomic data are crucial to track cases with locally acquired COVID-19 and for timely recognition of independent importations once border restrictions are lifted and trade and travel resume.
Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/genética , Genoma Viral/genética , Pandemias , Pneumonia Viral/genética , Betacoronavirus/patogenicidade , COVID-19 , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Humanos , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , SARS-CoV-2 , Análise de Sistemas , Sequenciamento Completo do GenomaRESUMO
The presentation of bacteriophage genomes as diagrams allows the location and organization of features to be communicated in a clear and effective manner. A wide range of software applications are available for the clear and accurate visualization of genomic data. Several of these applications incorporate comparative analysis tools, allowing for insertions, deletions, rearrangements and variations in syntenic regions to be visualized. In this chapter, freely available software and resources for the generation of high-quality graphical maps of bacteriophage genomes are listed and discussed.
Assuntos
Bacteriófagos/genética , Genômica/métodos , Publicações , DNA Circular/genética , Genoma Viral , Processamento de Imagem Assistida por Computador , SoftwareRESUMO
Providencia rettgeri is an opportunistic bacterial pathogen of clinical significance due to its association with urinary tract infections and multidrug resistance. Here, we report the first complete genome sequence of P. rettgeri The genome of strain RB151 consists of a 4.8-Mbp chromosome and a 108-kbp blaNDM-1-positive plasmid.
RESUMO
Bacteria that produce the broad-spectrum Carbapenem antibiotic New Delhi Metallo-ß-lactamase (NDM) place a burden on health care systems worldwide, due to the limited treatment options for infections caused by them and the rapid global spread of this antibiotic resistance mechanism. Although it is believed that the associated resistance gene blaNDM-1 originated in Acinetobacter spp., the role of Enterobacteriaceae in its dissemination remains unclear. In this study, we used whole genome sequencing to investigate the dissemination dynamics of blaNDM-1-positive plasmids in a set of 21 clinical NDM-1-positive isolates from Colombia and Mexico (Providencia rettgeri, Klebsiella pneumoniae, and Acinetobacter baumannii) as well as six representative NDM-1-positive Escherichia coli transconjugants. Additionally, the plasmids from three representative P. rettgeri isolates were sequenced by PacBio sequencing and finished. Our results demonstrate the presence of previously reported plasmids from K. pneumoniae and A. baumannii in different genetic backgrounds and geographically distant locations in Colombia. Three new previously unclassified plasmids were also identified in P. rettgeri from Colombia and Mexico, plus an interesting genetic link between NDM-1-positive P. rettgeri from distant geographic locations (Canada, Mexico, Colombia, and Israel) without any reported epidemiological links was discovered. Finally, we detected a relationship between plasmids present in P. rettgeri and plasmids from A. baumannii and K. pneumoniae. Overall, our findings suggest a Russian doll model for the dissemination of blaNDM-1 in Latin America, with P. rettgeri playing a central role in this process, and reveal new insights into the evolution and dissemination of plasmids carrying such antibiotic resistance genes.