Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ann Bot ; 116(4): 511-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25808655

RESUMO

BACKGROUND AND AIMS: Vitamin E helps to control the cellular redox state by reacting with singlet oxygen and preventing the propagation of lipid peroxidation in thylakoid membranes. Both plant ageing and phosphorus deficiency can trigger accumulation of reactive oxygen species, leading to damage to the photosynthetic apparatus. This study investigates how phosphorus availability and vitamin E interact in the control of plant longevity in the short-lived annual Arabidopsis thaliana. METHODS: The responses of tocopherol cyclase (VTE1)- and γ-tocopherol methyltransferase (VTE4)-null mutants to various levels of phosphorus availability was compared with that of wild-type plants. Longevity (time from germination to rosette death) and the time taken to pass through different developmental stages were determined, and measurements were taken of photosynthetic efficiency, pigment concentration, lipid peroxidation, vitamin E content and jasmonate content. KEY RESULTS: The vte1 mutant showed accelerated senescence under control conditions, excess phosphorus and mild phosphorus deficiency, suggesting a delaying, protective effect of α-tocopherol during plant senescence. However, under severe phosphorus deficiency the lack of α-tocopherol paradoxically increased longevity in the vte1 mutant, while senescence was accelerated in wild-type plants. Reduced photoprotection in vitamin E-deficient mutants led to increased levels of defence chemicals (as indicated by jasmonate levels) under severe phosphorus starvation in the vte4 mutant and under excess phosphorus and mild phosphorus starvation in the vte1 mutant, indicating a trade-off between the capacity for photoprotection and the activation of chemical defences (jasmonate accumulation). CONCLUSIONS: Vitamin E increases plant longevity under control conditions and mild phosphorus starvation, but accelerates senescence under severe phosphorus limitation. Complex interactions are revealed between phosphorus availability, vitamin E and the potential to synthesize jasmonates, suggesting a trade-off between photoprotection and the activation of chemical defences in the plants.


Assuntos
Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Fósforo/metabolismo , Vitamina E/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Longevidade , Metiltransferases/genética , Metiltransferases/metabolismo , Oxilipinas/metabolismo
2.
Plant Commun ; 4(3): 100514, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36585788

RESUMO

Climate change is increasing the frequency of extreme heat events that aggravate its negative impact on plant development and agricultural yield. Most experiments designed to study plant adaption to heat stress apply homogeneous high temperatures to both shoot and root. However, this treatment does not mimic the conditions in natural fields, where roots grow in a dark environment with a descending temperature gradient. Excessively high temperatures severely decrease cell division in the root meristem, compromising root growth, while increasing the division of quiescent center cells, likely in an attempt to maintain the stem cell niche under such harsh conditions. Here, we engineered the TGRooZ, a device that generates a temperature gradient for in vitro or greenhouse growth assays. The root systems of plants exposed to high shoot temperatures but cultivated in the TGRooZ grow efficiently and maintain their functionality to sustain proper shoot growth and development. Furthermore, gene expression and rhizosphere or root microbiome composition are significantly less affected in TGRooZ-grown roots than in high-temperature-grown roots, correlating with higher root functionality. Our data indicate that use of the TGRooZ in heat-stress studies can improve our knowledge of plant response to high temperatures, demonstrating its applicability from laboratory studies to the field.


Assuntos
Ecossistema , Raízes de Plantas , Temperatura , Raízes de Plantas/metabolismo , Meristema , Temperatura Alta , Plantas
3.
Mol Phylogenet Evol ; 64(2): 368-79, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22542691

RESUMO

The importance of the Aporrectodea caliginosa species complex lies in the great abundance and wide distribution of the species which exist within it. For more than a century, chaos has surrounded this complex; morphological criteria has failed to solve the taxonomic status of these species. This present body of work aims to study the phylogeny of this complex by increasing the number of samples used in previous molecular works and by including morphologically-similar species that were never studied using molecular tools (A. giardi, Nicodrilus monticola, N. carochensis and N. tetramammalis). Two basal clades were obtained: one formed by A. caliginosa and A. tuberculata and the other by the rest of the species. This second clade was divided into two more: one with Eurosiberian and another with Mediterranean forms. A. caliginosa and A. longa were divided into two paraphyletic groups. Both A. giardi and A. nocturna showed characteristics consistent with monophyletic groups. Each of the two recovered lineages of A. trapezoides were phylogenetically related to different sexual species. While lineage I of A. trapezoides was monophyletic, lineage II resulted to be paraphyletic, as well as the three Nicodrilus 'species'. The diversification of the complex occurred during the Late Miocene-Early Pliocene (6.92-11.09 Mya). The parthenogenetic forms within the Mediterranean clade would have diversified before the ones in the Eurosiberian clade (3.13-4.64 Mya and 1.05-3.48 Mya, respectively), thus implying the existence not only of at least two different moments in which parthenogenesis arose within this complex of species, but also of two different and independent evolutionary lines. Neither the 4× rule nor the GMYC method for species delimitation were successful for distinguishing taxonomically-distinct species.


Assuntos
Oligoquetos/classificação , Oligoquetos/genética , Partenogênese/genética , Filogenia , Animais , Evolução Molecular , Genes Mitocondriais , Filogeografia , Alinhamento de Sequência , Análise de Sequência de DNA
4.
J Plant Physiol ; 226: 114-122, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29758376

RESUMO

Ethylene signaling plays a major role in the regulation of plant growth, but its cross-talk with other phytohormones is still poorly understood. Here, we investigated whether or not a defect in ethylene signaling, particularly in the ETHYLENE INSENSITIVE3 (EIN3) transcription factor, alters plant growth and influences the contents of other phytohormones. With this aim, a hormonal profiling approach using ultrahigh performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) was used to unravel organ-specific responses (in roots, leaves and fruits) in the ein3-1 mutant and wild-type A. thaliana plants exposed to contrasting phosphate (Pi) availability. A defect in ethylene signaling in the ein3-1 mutant increased the biomass of roots, leaves and fruits, both at 0.5 mM and 1 mM Pi, thus indicating the growth-inhibitory role of ethylene in all tested organs. The hormonal profiling in roots revealed a cross-talk between ethylene signaling and other phytohormones, as indicated by increases in the contents of auxin, gibberellins and the stress-related hormones, abscisic acid, salicylic acid and jasmonic acid. The ein3-1 mutant also showed increased cytokinin contents in leaves. Reduced Pi availability (from 1 mM to 0.5 mM Pi) affected fruit growth, but not root and leaf growth, thus indicating mild Pi deficiency. It is concluded that ethylene signaling plays a major role in the modulation of plant growth in A. thaliana and that the ein3-1 mutant is not only altered in ethylene signaling but in the contents of several phytohormones in an organ-specific manner, thus indicating a hormonal cross-talk.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Etilenos/metabolismo , Proteínas Nucleares/genética , Fosfatos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA , Frutas/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Sementes/metabolismo , Fatores de Transcrição/metabolismo
5.
Front Plant Sci ; 8: 1396, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28848594

RESUMO

Vitamin E inhibits the propagation of lipid peroxidation and helps protecting photosystem II from photoinhibition, but little is known about its possible role in plant response to Pi availability. Here, we aimed at examining the effect of vitamin E deficiency in Arabidopsis thaliana vte mutants on phytohormone contents and the expression of transcription factors in plants exposed to contrasting Pi availability. Plants were subjected to two doses of Pi, either unprimed (controls) or previously exposed to low Pi (primed). In the wild type, α-tocopherol contents increased significantly in response to repeated periods of low Pi, which was paralleled by increased growth, indicative of a priming effect. This growth-stimulating effect was, however, abolished in vte mutants. Hormonal profiling revealed significant effects of Pi availability, priming and genotype on the contents of jasmonates and salicylates; remarkably, vte mutants showed enhanced accumulation of both hormones under low Pi. Furthermore, expression profiling of 1,880 transcription factors by qRT-PCR revealed a pronounced effect of priming on the transcript levels of 45 transcription factors mainly associated with growth and stress in wild-type plants in response to low Pi availability; while distinct differences in the transcriptional response were detected in vte mutants. We conclude that α-tocopherol plays a major role in the response of plants to Pi availability not only by protecting plants from photo-oxidative stress, but also by exerting a control over growth- and defense-related transcriptional reprogramming and hormonal modulation.

6.
J Photochem Photobiol B ; 156: 22-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26799330

RESUMO

Dimorphic plant species can show distinct nutrient needs due to sex-related differences in nutrient allocation to reproductive structures, which can potentially affect their sensitivity to photoinhibition and photo-oxidative stress. Here, we investigated sex-related differences in the extent of photo-oxidative stress in male and female individuals of U. dioica exposed to a combination of severe drought and nutrient starvation. Male and female individuals of U. dioica subject to severe drought stress were exposed to various levels of nutrient availability. First, a set of plants grown under field conditions and exposed to summer drought was used to test the effects of nutrient supply (given as NPK fertilizer). Secondly, the effects of various phosphate concentrations in the nutrient solution were tested in drought-stressed potted plants. The Fv/Fm ratio (maximum efficiency of PSII photochemistry), photoprotection capacity (levels of carotenoids, including the xanthophyll cycle, and vitamins C and E), and the extent of lipid peroxidation (hydroperoxide levels) were measured. Results showed that an application of the NPK fertilizer to the soil had a positive effect on drought-stressed plants, reducing the extent of lipid peroxidation in both males and females. P deficiency led to residual photoinhibition, as indicated by significant reductions in the Fv/Fm ratio, and enhanced lipid peroxidation in females, but not in males. We conclude that (i) increased nutrient availability in the soil can alleviate photo-oxidative stress in drought-stressed U. dioica plants, and (ii) U. dioica plants show sexual secondary dimorphism in terms of photoinhibition and photo-oxidative stress, but this is only apparent when stress infringed on plants is very severe.


Assuntos
Óvulo Vegetal , Estresse Oxidativo , Fotoquímica , Pólen , Urtica dioica/efeitos da radiação , Secas , Urtica dioica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA