Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36676291

RESUMO

In this article, we present the performance of Copper (Cu)/Graphene Nano Sheets (GNS) and C-π (Graphite, GNS, and Nitrogen-doped Graphene Nano Sheets (N-GNS)) as a new battery electrode prototype. The objectives of this research are to develop a number of prototypes of the battery electrode, namely Cu/GNS//Electrolyte//C-π, and to evaluate their respective performances. The GNS, N-GNS, and primary battery electrode prototypes (Cu/GNS/Electrolyte/C-π) were synthesized by using a modified Hummers method; the N-doped sheet was obtained by doping nitrogen at room temperature and the impregnation or the composite techniques, respectively. Commercial primary battery electrodes were also used as a reference in this research. The Graphite, GNS, N-GNS, commercial primary batteries electrode, and battery electrode prototypes were analyzed using an XRD, SEM-EDX, and electrical multimeter, respectively. The research data show that the Cu particles are well deposited on the GNS and N-GNS (XRD and SEM-EDX data). The presence of the Cu metal and electrolytes (NH4Cl and MnO2) materials can increase the electrical conductivities (335.6 S cm-1) and power density versus the energy density (4640.47 W kg-1 and 2557.55 Wh kg-1) of the Cu/GNS//Electrolyte//N-GNS compared to the commercial battery (electrical conductivity (902.2 S cm-1) and power density versus the energy density (76 W kg-1 and 43.95 W kg-1). Based on all of the research data, it may be concluded that Cu/GNS//Electrolyte//N-GNS can be used as a new battery electrode prototype with better performances and electrical activities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA