Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Immunol ; 207(2): 709-719, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34215656

RESUMO

Tumor-treating fields (TTFields) are a localized, antitumoral therapy using alternating electric fields, which impair cell proliferation. Combining TTFields with tumor immunotherapy constitutes a rational approach; however, it is currently unknown whether TTFields' locoregional effects are compatible with T cell functionality. Healthy donor PBMCs and viably dissociated human glioblastoma samples were cultured under either standard or TTFields conditions. Select pivotal T cell functions were measured by multiparametric flow cytometry. Cytotoxicity was evaluated using a chimeric Ag receptor (CAR)-T-based assay. Glioblastoma patient samples were acquired before and after standard chemoradiation or standard chemoradiation + TTFields treatment and examined by immunohistochemistry and by RNA sequencing. TTFields reduced the viability of proliferating T cells, but had little or no effect on the viability of nonproliferating T cells. The functionality of T cells cultured under TTFields was retained: they exhibited similar IFN-γ secretion, cytotoxic degranulation, and PD1 upregulation as controls with similar polyfunctional patterns. Glioblastoma Ag-specific T cells exhibited unaltered viability and functionality under TTFields. CAR-T cells cultured under TTFields exhibited similar cytotoxicity as controls toward their CAR target. Transcriptomic analysis of patients' glioblastoma samples revealed a significant shift in the TTFields-treated versus the standard-treated samples, from a protumoral to an antitumoral immune signature. Immunohistochemistry of samples before and after TTFields treatment showed no reduction in T cell infiltration. T cells were found to retain key antitumoral functions under TTFields settings. Our data provide a mechanistic insight and a rationale for ongoing and future clinical trials that combine TTFields with immunotherapy.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Glioblastoma/imunologia , Glioblastoma/terapia , Linfócitos T/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Terapia Combinada/métodos , Humanos , Imunoterapia/métodos , Interferon gama/metabolismo , Linfócitos T/imunologia , Transcriptoma/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA