Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Tumori ; : 3008916241261675, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101541

RESUMO

BACKGROUND: Colorectal cancer is a worldwide leading cause of death accounting for high-rate mortality. Mutations in the epidermal growth factor receptor and RAS/MAPK pathways, as well as altered methylation genes profiles, have been described as molecular mechanisms promoting and sustaining tumour development and progression. Aberrant methylation is a well-known epigenetic mechanism involved in gene regulation; particularly several genes were reported as hypermethylated in CRC. Recently, it was shown that epigenetic alterations in genes such as neuropeptide y, proenkephalin and Wnt inhibitory factor 1 can be used as promising disease biomarkers. Almost all methods developed for the DNA methylation analysis combined next generation sequencing, conventional qRT-PCR or ddPCR with the prior DNA modification with sodium bisulfite. METHODS AND RESULTS: We implemented a ddPCR method to assess the methylation status of Wnt inhibitory factor 1 and neuropeptide y using the methylation sensitive restriction enzyme approach that does not impact on DNA quality and guarantees the discrimination of DNA methylation independent of bisulfite conversion. CONCLUSIONS: We showed that this method is robust and sensitive also allowing the monitoring of CRC disease progression when applied to circulating free DNA samples from liquid biopsies, proving to be a fast and easy to implement assay to be used for the monitoring of the methylation pattern of clinically relevant target genes.

2.
Front Oncol ; 13: 1307545, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38406172

RESUMO

Background: Retreatment with anti-EGFR monoclonal antibodies is a promising strategy in patients with RAS/BRAF wild-type (wt) metastatic colorectal cancer (mCRC) who achieved benefit from previous anti-EGFR exposure upon exclusion of mutations in RAS/BRAF genes according to circulating tumor DNA (ctDNA) analysis by means of liquid biopsy (LB). This treatment approach is now being investigated in the randomized phase II trial PARERE (NCT04787341). We here present preliminary findings of molecular screening. Methods: Patients with RAS/BRAFV600E wt mCRC according to tissue genotyping who benefited from previous anti-EGFR-based treatment (fluoropyrimidines, oxaliplatin, irinotecan, and antiangiogenics) and then experienced disease progression to EGFR targeting were eligible for screening in the PARERE trial. The next-generation sequencing (NGS) panel Oncomine™ was employed for ctDNA testing. Results: A total of 218 patients underwent LB, and ctDNA sequencing was successful in 201 of them (92%). RAS/BRAFV600E mutations were found in 68 (34%) patients and were mainly subclonal (median variant allele fraction [VAF] for KRAS, NRAS, and BRAF mutant clones: 0.52%, 0.62%, and 0.12%, respectively; p = 0.01), with KRASQ61H being the most frequently detected (31%). Anti-EGFR-free intervals did not predict ctDNA molecular status (p = 0.12). Among the 133 patients with RAS/BRAFV600E wt tumors according to LB, 40 (30%) harbored a mutation in at least another gene potentially implied in anti-EGFR resistance, mainly with subclonal expression (median VAF, 0.56%). In detail, alterations in PIK3CA, FBXW7, GNAS, MAP2K, ERBB2, BRAF (class I and II non-BRAFV600E), SMAD, EGFR, AKT1, and CTNNB1 occurred in 13%, 8%, 7%, 3%, 2%, 2%, 1%, 1%, 1%, and 1% cases, respectively. Co-mutations were detected in 13 (33%) out of 40 patients. Conclusions: This is the largest prospective cohort of mCRC patients screened with LB for anti-EGFR retreatment in a randomized study. ctDNA genotyping reveals that at least one out of three patients candidate for retreatment should be excluded from this therapy, and other potential drivers of anti-EGFR resistance are found in approximately one out of three patients with RAS/BRAFV600E wt ctDNA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA