Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mol Biol Evol ; 33(4): 885-97, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26668183

RESUMO

The World Health Organization has declared the emergence of antibiotic resistance to be a global threat to human health. Broad-host-range plasmids have a key role in causing this health crisis because they transfer multiple resistance genes to a wide range of bacteria. To limit the spread of antibiotic resistance, we need to gain insight into the mechanisms by which the host range of plasmids evolves. Although initially unstable plasmids have been shown to improve their persistence through evolution of the plasmid, the host, or both, the means by which this occurs are poorly understood. Here, we sought to identify the underlying genetic basis of expanded plasmid host-range and increased persistence of an antibiotic resistance plasmid using a combined experimental-modeling approach that included whole-genome resequencing, molecular genetics and a plasmid population dynamics model. In nine of the ten previously evolved clones, changes in host and plasmid each slightly improved plasmid persistence, but their combination resulted in a much larger improvement, which indicated positive epistasis. The only genetic change in the plasmid was the acquisition of a transposable element from a plasmid native to the Pseudomonas host used in these studies. The analysis of genetic deletions showed that the critical genes on this transposon encode a putative toxin-antitoxin (TA) and a cointegrate resolution system. As evolved plasmids were able to persist longer in multiple naïve hosts, acquisition of this transposon also expanded the plasmid's host range, which has important implications for the spread of antibiotic resistance.


Assuntos
Resistência Microbiana a Medicamentos/genética , Evolução Molecular , Plasmídeos/genética , Pseudomonas/genética , Elementos de DNA Transponíveis/genética , Especificidade de Hospedeiro/genética , Interações Hospedeiro-Patógeno/genética , Humanos , Pseudomonas/efeitos dos fármacos , Pseudomonas/patogenicidade , Análise de Sequência de DNA
2.
Infect Immun ; 84(2): 480-90, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-26597986

RESUMO

The direct major histocompatibility complex (MHC) class I antigen presentation pathway ensures intracellular peptides are displayed at the cellular surface for recognition of infected or transformed cells by CD8(+) cytotoxic T lymphocytes. Chlamydia spp. are obligate intracellular bacteria and, as such, should be targeted by CD8(+) T cells. It is likely that Chlamydia spp. have evolved mechanisms to avoid the CD8(+) killer T cell responses by interfering with MHC class I antigen presentation. Using a model system of self-peptide presentation which allows for posttranslational control of the model protein's stability, we tested the ability of various Chlamydia species to alter direct MHC class I antigen presentation. Infection of the JY lymphoblastoid cell line limited the accumulation of a model host protein and increased presentation of the model-protein-derived peptides. Enhanced self-peptide presentation was detected only when presentation was restricted to defective ribosomal products, or DRiPs, and total MHC class I levels remained unaltered. Skewed antigen presentation was dependent on a bacterial synthesized component, as evidenced by reversal of the observed phenotype upon preventing bacterial transcription, translation, and the inhibition of bacterial lipooligosaccharide synthesis. These data suggest that Chlamydia spp. have evolved to alter the host antigen presentation machinery to favor presentation of defective and rapidly degraded forms of self-antigen, possibly as a mechanism to diminish the presentation of peptides derived from bacterial proteins.


Assuntos
Apresentação de Antígeno , Autoantígenos/imunologia , Chlamydia trachomatis/imunologia , Chlamydia trachomatis/patogenicidade , Antígenos de Histocompatibilidade Classe I/imunologia , Interações Hospedeiro-Patógeno , Autoantígenos/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Linhagem Celular , Infecções por Chlamydia/imunologia , Infecções por Chlamydia/microbiologia , Humanos , Células MCF-7 , Microscopia Eletrônica , Fenótipo
3.
Infect Immun ; 82(7): 2788-801, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24733097

RESUMO

Vibrio cholerae, an etiological agent of cholera, circulates between aquatic reservoirs and the human gastrointestinal tract. The type II secretion (T2S) system plays a pivotal role in both stages of the lifestyle by exporting multiple proteins, including cholera toxin. Here, we studied the kinetics of expression of genes encoding the T2S system and its cargo proteins. We have found that under laboratory growth conditions, the T2S complex was continuously expressed throughout V. cholerae growth, whereas there was growth phase-dependent transcriptional activity of genes encoding different cargo proteins. Moreover, exposure of V. cholerae to different environmental cues encountered by the bacterium in its life cycle induced transcriptional expression of T2S. Subsequent screening of a V. cholerae genomic library suggested that σ(E) stress response, phosphate metabolism, and the second messenger 3',5'-cyclic diguanylic acid (c-di-GMP) are involved in regulating transcriptional expression of T2S. Focusing on σ(E), we discovered that the upstream region of the T2S operon possesses both the consensus σ(E) and σ(70) signatures, and deletion of the σ(E) binding sequence prevented transcriptional activation of T2S by RpoE. Ectopic overexpression of σ(E) stimulated transcription of T2S in wild-type and isogenic ΔrpoE strains of V. cholerae, providing additional support for the idea that the T2S complex belongs to the σ(E) regulon. Together, our results suggest that the T2S pathway is characterized by the growth phase-dependent expression of genes encoding cargo proteins and requires a multifactorial regulatory network to ensure appropriate kinetics of the secretory traffic and the fitness of V. cholerae in different ecological niches.


Assuntos
Proteínas de Bactérias/metabolismo , Fator sigma/metabolismo , Vibrio cholerae/metabolismo , Proteínas de Bactérias/genética , Clonagem Molecular , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/fisiologia , Fator sigma/genética , Fatores de Tempo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA