Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Appl Microbiol ; 128(6): 1820-1842, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31999872

RESUMO

AIMS: Staphylococcus aureus is one of the most common pathogens in hospital environment and community. Panton-Valentine leukocidin (PVL) production is clinically associated with skin abscesses, soft tissues infections, bacteraemia and sepsis. This study aimed to investigate the effects of the presence of genes lukF/S-PV coding for PVL, in histological and haematological features during systemic infection, using a Swiss mice experimental model. METHODS AND RESULTS: Experiments were performed using 25 mice distributed into five experimental groups, intravenously inoculated with 50 µl suspensions at density 1·0 × 107  CFU per ml of strains: methicillin-susceptible (MSSA) and pvl-negative strains isolated from nasal colonization; MSSA pvl-positive strains isolated from nasal colonization; methicillin-resistant (MRSA) and pvl-positive strains isolated from peripheral blood of a patient with severe pulmonary infection; and a MRSA pvl-positive strains isolated from a peripheral blood culture of a patient with bacteraemia. Haematological analysis was performed at 24, 48, 72 and 96 h post-infection. Morphoanatomy and histopathological analyses were performed at 96 h post-infection. For all S. aureus strains tested, the capability of intravenous dissemination and survival into mice tissues was demonstrated. Inflammatory processes at different levels were related to the presence of pvl genes, and included alterations in the format, size and colour of the organs. Staphylococcus aureus pvl-positive strains were detected in greater numbers in the organs of the infected animals. CONCLUSIONS: The pvl-positive strains isolated from blood cultures were capable to induce the greatest modifications in both haematological and histopathological profiles, and seemed to aggravate the systemic infections. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings are valuable in characterizing infections caused by S. aureus in humans and murine.


Assuntos
Toxinas Bacterianas/metabolismo , Exotoxinas/metabolismo , Leucocidinas/metabolismo , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Animais , Bacteriemia/microbiologia , Bacteriemia/patologia , Toxinas Bacterianas/genética , Modelos Animais de Doenças , Exotoxinas/genética , Humanos , Leucocidinas/genética , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Staphylococcus aureus Resistente à Meticilina/metabolismo , Camundongos , Staphylococcus aureus/genética , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidade
2.
New Microbes New Infect ; 25: 7-13, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29997890

RESUMO

Corynebacteriumulcerans is an important zoonotic pathogen which is causing diphtheria-like disease in humans globally. In this study, the genomes of three recently isolated C. ulcerans strains, 4940, 2590 and BR-AD 2649, respectively from an asymptomatic carrier, a patient with pharyngitis and a canine host, were sequenced to investigate their virulence potential. A comparative analysis was performed including the published genome sequences of 16 other C. ulcerans isolates. C. ulcerans strains belong to two lineages; 13 strains are grouped together in lineage 1, and six strains comprise lineage 2. Consistent with the zoonotic nature of C. ulcerans infections, isolates from both the human and canine hosts clustered in both the lineages. Most of the strains possessed spaDEF and spaBC gene clusters along with the virulence genes cpp, pld, cwlH, nanH, rpfI, tspA and vsp1. The gene encoding Shiga-like toxin was only present in one strain, and 11 strains carried the tox gene encoding the diphtheria-like toxin. However, none of strains 4940, 2590 and BR-AD 2649 carried any toxin genes. These strains varied in the number of prophages in their genomes, which suggests that they play an important role in introducing diversity in C. ulcerans. The pan-genomic analyses revealed a variation in the number of membrane-associated and secreted proteins that may contribute to the variation in pathogenicity among different strains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA