Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Expert Rev Proteomics ; 20(4-6): 109-119, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37229542

RESUMO

BACKGROUND: Malignant peripheral nerve sheath tumor (MPNST) is an aggressive sarcoma with a poor prognosis that requires novel therapeutic agents. Proteome information is useful for identifying new therapeutic candidates because it directly reflects the biological phenotype. Additionally, in vitro drug screening is an effective tool to identify candidate drugs for common cancers. Hence, we attempted to identify novel therapeutic candidates for MPNST by integrating proteomic analysis and drug screening. METHODS: We performed comprehensive proteomic analysis on 23 MPNST tumor samples using liquid chromatography - tandem mass spectrometry to identify therapeutic targets. We also conducted drug screening of six MPNST cell lines using 214 drugs. RESULTS: Proteomic analysis revealed that the MET and IGF pathways were significantly enriched in the local recurrence/distant metastasis group of MPNST, whereas drug screening revealed that 24 drugs showed remarkable antitumor effects on the MPNST cell lines. By integrating the results of these two approaches, MET inhibitors, crizotinib and foretinib, were identified as novel therapeutic candidates for the treatment of MPNST. CONCLUSIONS: We successfully identified novel therapeutic candidates for the treatment of MPNST, namely crizotinib and foretinib, which target the MET pathway. We hope that these candidate drugs will contribute to the treatment of MPNST.


Assuntos
Neoplasias de Bainha Neural , Neurofibrossarcoma , Humanos , Neoplasias de Bainha Neural/tratamento farmacológico , Neoplasias de Bainha Neural/diagnóstico , Neoplasias de Bainha Neural/genética , Proteoma , Avaliação Pré-Clínica de Medicamentos , Crizotinibe/farmacologia , Crizotinibe/uso terapêutico , Proteômica , Linhagem Celular Tumoral
2.
Biochem Biophys Res Commun ; 500(2): 163-169, 2018 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-29625109

RESUMO

Cockayne syndrome (CS) is a severe disorder with no effective treatment. The Cockayne syndrome group B (CSB) gene is one gene responsible for CS and also causes UV sensitive syndrome (UVSS), a disorder that causes mild symptoms. How the CSB gene determines a patient's fate is unknown, but one intriguing point is that in UVSS patient cell, there are nonsense mutations in both alleles at the same position in each upstream region of the PiggyBac transposable element derived 3 (PGBD3) inserted region. In contrast, in CS patient cells, there is at least one allele with several mutations downstream of the PGBD3 inserted region, or there are homozygous mutations in exon 1. Here, we designed and synthesized 24 splice switching oligonucleotides (SSOs) to skip exon 3 in CSB mRNA. Use of these SSOs induced a frame shift in order to generate an alternative stop codon at the upstream region of the PGBD3 invasion site. As a result, a reduction of mitochondrial membrane potential following H2O2 treatment in CS cell was recovered. It was demonstrated that up-regulation of several gene expression brought about by SSOs are related to mitochondrial dysfunction in CS cells.


Assuntos
Síndrome de Cockayne/genética , Síndrome de Cockayne/patologia , DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , Oligonucleotídeos/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Splicing de RNA/genética , Linhagem Celular , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Éxons , Humanos , Peróxido de Hidrogênio/farmacologia , Potencial da Membrana Mitocondrial , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transfecção , Raios Ultravioleta
3.
J Biol Chem ; 291(3): 1387-97, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26620705

RESUMO

Cockayne syndrome (CS) is a recessive disorder that results in deficiencies in transcription-coupled nucleotide excision repair (TC-NER), a subpathway of nucleotide excision repair, and cells from CS patients exhibit hypersensitivity to UV light. CS group B protein (CSB), which is the gene product of one of the genes responsible for CS, belongs to the SWI2/SNF2 DNA-dependent ATPase family and has an ATPase domain and an ubiquitin-binding domain (UBD) in the central region and the C-terminal region, respectively. The C-terminal region containing the UBD is essential for the functions of CSB. In this study, we generated several CSB deletion mutants and analyzed the functions of the C-terminal region of CSB in TC-NER. Not only the UBD but also the C-terminal 30-amino acid residues were required for UV light resistance and TC-NER. This region was needed for the interaction of CSB with RNA polymerase II, the translocation of CS group A protein to the nuclear matrix, and the association of CSB with chromatin after UV irradiation. CSB was modified by small ubiquitin-like modifier 2/3 in a UV light-dependent manner. This modification was abolished in a CSB mutant lacking the C-terminal 30 amino acid residues. However, the substitution of lysine residues in this region with arginine did not affect SUMOylation or TC-NER. By contrast, substitution of a lysine residue in the N-terminal region with arginine decreased SUMOylation and resulted in cells with defects in TC-NER. These results indicate that both the most C-terminal region and SUMOylation are important for the functions of CSB in TC-NER.


Assuntos
DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA , Sumoilação , Transcrição Gênica , Substituição de Aminoácidos , Western Blotting , Linhagem Celular , Quebras de DNA/efeitos da radiação , DNA Helicases/química , DNA Helicases/genética , Reparo do DNA/efeitos da radiação , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/genética , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Deleção de Genes , Humanos , Imunoprecipitação , Lisina , Mutação , Proteínas de Ligação a Poli-ADP-Ribose , Domínios e Motivos de Interação entre Proteínas , Tolerância a Radiação , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação/efeitos da radiação , Ubiquitinas/metabolismo , Raios Ultravioleta/efeitos adversos
4.
Hum Cell ; 37(1): 337-344, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37907774

RESUMO

Leiomyosarcoma (LMS) is an aggressive mesenchymal malignancy, which originates from the smooth muscle cells or from the precursor mesenchymal stem cells that potentially differentiate into smooth muscle cells. LMS is one of the most common sarcomas. LMS has genomic instability, reflecting complex and unbalanced karyotypes, and the cytogenetic and molecular changes in LMS are not consistent. The standard treatment of the primary LMS is complete resection, and the metastasis is often observed even after curative surgery. Patient-derived cancer models are a key bioresource to develop a novel therapy, and we aimed to establish and characterize a novel cell line for LMS. We established a cell line from tumor tissues of the patient with LMS and named it NCC-LMS3-C1. We maintained NCC-LMS3-C1 cells for 12 months and passed them more than 30 times. Genome-wide copy number analysis demonstrated that NCC-LMS3-C1 cells harbored genetic abnormalities. NCC-LMS3-C1 cells exhibited aggressive phenotypes such as continuous growth, spheroid formation, and invasion in the tissue culture condition, which may reflect the clinical behaviors of LMS. We performed a drug screening using NCC-LMS3-C1 cells and found that four anti-cancer agents, such as bortezomib, dasatinib, mitoxantrone, and romidepsin, had remarkable anti-proliferative effects on NCC-LMS3-C1 cells. We conclude that NCC-LMS3-C1 cells will be a useful resource for the study of LMS.


Assuntos
Antineoplásicos , Leiomiossarcoma , Sarcoma , Humanos , Leiomiossarcoma/genética , Leiomiossarcoma/patologia , Linhagem Celular Tumoral , Sarcoma/genética , Antineoplásicos/farmacologia , Mitoxantrona
5.
Hum Cell ; 37(2): 511-522, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38143259

RESUMO

Pseudomyxoma peritonei (PMP) is a rare phenomenon, characterized by accumulation of mucus in the abdominal cavity due to a mucinous neoplasm. Histologically, PMP is divided into three prognostic classes, namely low-grade mucinous carcinoma peritonei (LGMCP), high-grade mucinous carcinoma peritonei (HGMCP), and high-grade mucinous carcinoma peritonei with signet ring cells (HGMCP-S); HGMCP-S exhibits the worst prognosis. Complete cytoreductive surgery and hyperthermic intraperitoneal chemotherapy have been established as the standard therapy for PMP. However, 50% of patients with PMP experience a recurrence, and 30-40% are unable to receive the standard treatment due to invasive diseases. Therefore, novel therapies are required for their treatment. Although patient-derived cell lines are important tools for basic and pre-clinical research, PMP cell lines derived from patients with HGMCP-S have never been reported. Thus, we established a novel PMP cell line NCC-PMP2-C1, using surgically resected tumor tissue from a patient with HGMCP-S. NCC-PMP2-C1 cells were maintained for more than five months and passaged 30 times under culture conditions. NCC-PMP2-C1 cells exhibited multiple deletions and somatic mutations, slow growth, histological features, and dissemination of tumor cells in nude mice. Screening for the anti-proliferative effects of anti-cancer drugs on cells revealed that bortezomib, mubritinib, and romidepsin had a significant response against NCC-PMP2-C1 cells. Thus, the NCC-PMP2-C1 cell line is the first PMP cell line harboring signet ring cells and will be a valuable resource for basic and preclinical studies of HGMCP-S.


Assuntos
Adenocarcinoma Mucinoso , Carcinoma de Células em Anel de Sinete , Neoplasias Peritoneais , Pseudomixoma Peritoneal , Animais , Camundongos , Humanos , Pseudomixoma Peritoneal/terapia , Pseudomixoma Peritoneal/metabolismo , Pseudomixoma Peritoneal/patologia , Camundongos Nus , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/terapia , Adenocarcinoma Mucinoso/patologia , Carcinoma de Células em Anel de Sinete/terapia , Carcinoma de Células em Anel de Sinete/patologia , Proteína P2 de Mielina
6.
Hum Cell ; 37(3): 874-885, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38466561

RESUMO

Giant cell tumor of bone (GCTB) is a rare osteolytic bone tumor consisting of mononuclear stromal cells, macrophages, and osteoclast-like giant cells. Although GCTB predominantly exhibits benign behavior, the tumor carries a significant risk of high local recurrence. Furthermore, GCTB can occasionally undergo malignant transformation and distal metastasis, making it potentially fatal. The standard treatment is complete surgical resection; nonetheless, an optimal treatment strategy for advanced GCTB remains unestablished, necessitating expanded preclinical research to identify appropriate therapeutic options. However, only one GCTB cell line is publicly available from a cell bank for research use worldwide. The present study reports the establishment of two novel cell lines, NCC-GCTB8-C1 and NCC-GCTB9-C1, derived from the primary tumor tissues of two patients with GCTB. Both cell lines maintained the hallmark mutation in the H3-3A gene, which is associated with tumor formation and development in GCTB. Characterization of these cell lines revealed their steady growth, spheroid-formation capability, and invasive traits. Potential therapeutic agents were identified via extensive drug screening of the two cell lines and seven previously established GCTB cell lines. Among the 214 antitumor agents tested, romidepsin, a histone deacetylase inhibitor, and mitoxantrone, a topoisomerase inhibitor, were identified as potential therapeutic agents against GCTB. Conclusively, the establishment of NCC-GCTB8-C1 and NCC-GCTB9-C1 provides novel and crucial resources that are expected to advance GCTB research and potentially revolutionize treatment strategies.


Assuntos
Antineoplásicos , Neoplasias Ósseas , Tumor de Células Gigantes do Osso , Humanos , Tumor de Células Gigantes do Osso/genética , Tumor de Células Gigantes do Osso/patologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia
8.
Hum Cell ; 36(2): 847-853, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36629983

RESUMO

Desmoid fibromatosis (DSM) is a rare, locally aggressive mesenchymal tumor genetically characterized by mutations in the CTNNB1 gene. A local control rate of up to 65‒80% for DSM is achieved with multiple modality treatments, including watchful monitoring, radiation therapy, chemotherapy, and surgery. However, several variables, such as age < 30 years, extremity tumor location, and tumor size of > 10 cm in diameter, are associated with poor local control rates in patients with DSM. The definitive treatments for DSM have not been established. Therefore, it is necessary to develop novel treatments for DSM. Moreover, although patient-derived tumor cell lines are potent tools for preclinical research, no DSM cell lines have been reported. Therefore, this study aimed to establish and characterize a novel DSM cell line for preclinical studies on DSM. Herein, we established the first cell line derived from a patient with DSM exhibiting poor prognostic factors (27-year-old male patient with a DSM tumor of > 10 cm in diameter located at the lower extremity) and named it NCC-DSM1-C1. NCC-DSM1-C1 cells had a T41A mutation in CTNNB1 and exhibited constant proliferation, spheroid formation, and invasion capability in vitro. Screening of antitumor agents in NCC-DSM1-C1 cells showed that bortezomib and romidepsin are effective against DSM. In conclusion, we report the first officially characterized DSM cell line derived from a patient with DSM exhibiting factors associated with poor prognosis. We believe that NCC-DSM1-C1 cell line is a useful tool for developing novel treatments for DSM.


Assuntos
Antineoplásicos , Fibromatose Agressiva , Masculino , Humanos , Adulto , Linhagem Celular Tumoral , Mutação , Bortezomib
9.
Hum Cell ; 36(1): 468-475, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36436139

RESUMO

Pleomorphic liposarcoma (PLPS) is a highly malignant subtype of liposarcoma. It is histologically characterized by the presence of pleomorphic lipoblasts and can be accompanied by morphological foci that demonstrate differentiation to other histological lineages. PLPS is rare and accounts for only 5% of all liposarcomas. PLPS exhibits poor prognosis; distant metastases develop in 30-50% of patients after curative surgical resection, tumor-associated mortality occurs in up to 50% of patients, and effective chemotherapies for PLPS have not been established. The histological accompaniment of other morphological foci is an important prognostic factor for PLPS, and the development of chemotherapies for PLPS considering the histological morphology is necessary. Patient-derived cancer cell lines are critical tools for basic and pre-clinical research to understand diseases and develop chemotherapies. However, only two PLPS-derived cell lines have been reported, and their donor tumor specimens did not histologically accompany morphological foci other than lipoblasts. Thus, there is a need to establish patient-derived PLPS cell lines from various histological morphologies. Here, we report a novel PLPS cell line from a tumor specimen that histologically accompanied pleomorphic and bone-forming foci, and named it NCC-PLPS2-C1. NCC-PLPS2-C1 cells demonstrated constant proliferation, spheroid formation, and invasion capability in vitro. Screening of antitumor agents in NCC-PLPS2-C1 cells showed that bortezomib, romidepsin, and trabectedin were effective against NCC-PLPS2-C1. In conclusion, we report the first PLPS cell line from a tumor specimen that was morphologically accompanied by pleomorphic and born-forming foci. We believe that NCC-PLPS2-C1 will be useful for the development of novel chemotherapies for PLPS.


Assuntos
Antineoplásicos , Lipossarcoma , Humanos , Lipossarcoma/genética , Lipossarcoma/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Trabectedina , Linhagem Celular Tumoral
10.
Hum Cell ; 36(6): 2187-2194, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37490236

RESUMO

Dermatofibrosarcoma protuberans (DFSP) is a superficial low-grade sarcoma, genetically characterized by a fusion gene in collagen type I α (COL1A1) gene and platelet-derived growth factor subunit ß (PDGFB). DFSP is locally aggressive and does not typically metastasize. However, DFSP with fibrosarcomatous transformation, which occurs in 7-16% of DFSP cases, demonstrates a poor prognosis than classic DFSP with a higher local recurrence rate and metastatic potential. Although imatinib, a PDGF receptor inhibitor, is a potent therapeutic agent for classic DFSP, it is less effective for DFSP with fibrosarcomatous transformation. The development of definitive chemotherapies for DFSP with fibrosarcomatous transformation is required. Patient-derived tumor cell lines are indispensable tools for preclinical research to discover novel therapeutic agents. However, only seven cell lines were derived from DFSP, out of which only two were established from DFSP with fibrosarcomatous transformation. Hence, in the present study, we established a novel DFSP cell line, NCC-DFSP4-C1, from a surgically resected DFSP tumor specimen with fibrosarcomatous transformation. NCC-DFSP4-C1 harbored an identical COL1A1-PDGFB fusion gene as its donor tumor. NCC-DFSP4-C1 cells retained the morphology of their donor tumor and demonstrated constant proliferation, spheroid formation, and invasion capability in vitro. By screening a drug library, we found that bortezomib and romidepsin demonstrated the strongest suppressive effects on the proliferation of NCC-DFSP4-C1 cells. In conclusion, we report a novel cell line of DFSP with fibrosarcomatous transformation, and demonstrate its utility in the development of novel therapeutic agents for DFSP.

11.
Hum Cell ; 36(5): 1804-1812, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37328637

RESUMO

Giant cell tumor of bone (GCTB) is a rare bone tumor with osteolytic features, composed of stromal cells with a monotonous appearance, macrophages, and osteoclast-like giant cells. GCTB is commonly associated with a pathogenic mutation in the H3-3A gene. While complete surgical resection is the standard cure for GCTB, it often results in local recurrence and, rarely, metastasis. Thus, an effective multidisciplinary treatment approach is necessary. Although patient-derived cell lines is an essential tool for investigating novel treatment strategies, there are only four GCTB cell lines available in public cell banks. Therefore, this study aimed to establish novel GCTB cell lines and successfully created NCC-GCTB6-C1 and NCC-GCTB7-C1 cell lines from two patients' surgically removed tumor tissues. These cell lines exhibited H3-3A gene mutations, consistent proliferation, and invasive properties. After characterizing their behaviors, we performed high-throughput screening of 214 anti-cancer drugs for NCC-GCTB6-C1 and NCC-GCTB7-C1 and integrated their screening data with those of NCC-GCTB1-C1, NCC-GCTB2-C1, NCC-GCTB3-C1, NCC-GCTB4-C1, and NCC-GCTB5-C1 that we previously established. We identified histone deacetylase inhibitor romidepsin as a possible treatment for GCTB. These findings suggest that NCC-GCTB6-C1 and NCC-GCTB7-C1 could be valuable tools for preclinical and basic research on GCTB.


Assuntos
Antineoplásicos , Neoplasias Ósseas , Tumor de Células Gigantes do Osso , Humanos , Tumor de Células Gigantes do Osso/genética , Linhagem Celular Tumoral , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Antineoplásicos/farmacologia , Proliferação de Células/genética
12.
Hum Cell ; 35(1): 400-407, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34775549

RESUMO

Malignant peripheral nerve sheath tumors (MPNSTs) are a rare subtype of mesenchymal tumors that arise from the sheath of peripheral nerves. MPNSTs exhibit strong metastatic potential, leading to poor clinical outcomes. The clinical utility of radiation therapy and chemotherapy is marginal with respect to overall survival and effective systematic therapies for MPNSTs are still needed to improve patient outcome. Although patient-derived cell lines are an essential tool for the development of novel therapies, only a limited number of cell lines have been reported and are available from cell banks. Thus, we established the novel MPNST cell line, NCC-MPNST6-C1, using surgically resected MPNST tissue. The NCC-MPNST6-C1 cells retained copy-number alterations similar to those of the original tumors and demonstrated constant proliferation, spheroid formation, and invasion capability in vitro, which reflected the malignant features of the original tumor tissue. While the NCC-MPNST6-C1 cells did not exhibit tumorigenesis in nude mice, their use in drug screening resulted in anti-cancer agents with low IC50 values. Hence, we conclude that the NCC-MPNST6-C1 cell line is a useful resource for the study of MPNSTs.


Assuntos
Neoplasias de Bainha Neural/patologia , Neoplasias do Sistema Nervoso Periférico/patologia , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos Nus , Invasividade Neoplásica , Esferoides Celulares/patologia
13.
Hum Cell ; 35(4): 1290-1297, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35655041

RESUMO

Synovial sarcoma (SS) is a rare and aggressive mesenchymal malignancy driven by a unique chromosomal translocation that generates the expression of the SS18:SSX fusion protein. It occurs at almost any anatomical site and most commonly in young adults. The standard curative treatment for primary SS is a wide surgical resection combined with radiotherapy and/or neoadjuvant chemotherapy. The prognosis of SS varies among patients, with the 5 years survival rate ranging from 50 to 60% in adults and 90% in children. Although patient-derived cell lines are a useful resource for the development of new therapies, only a few are available from public cell banks. Therefore, this study aimed to establish and characterize a novel SS cell line. We successfully established a novel cell line, NCC-SS5-C1, harboring an SS18-SSX1 fusion gene. NCC-SS5-C1 cells demonstrated constant growth and invasion ability. We performed integrative drug screening using eight SS cell lines, including NCC-SS5-C1 cells, and examined the response spectrum of existing anticancer agents. We conclude that NCC-SS5-C1 is a useful resource for studying SS.


Assuntos
Antineoplásicos , Sarcoma Sinovial , Sarcoma , Linhagem Celular Tumoral , Criança , Humanos , Proteínas de Fusão Oncogênica/genética , Sarcoma/genética , Sarcoma Sinovial/genética , Sarcoma Sinovial/patologia , Sarcoma Sinovial/terapia , Translocação Genética
14.
Hum Cell ; 35(4): 1279-1289, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35637403

RESUMO

Myxoid liposarcoma (MLPS) is a lipogenic sarcoma, characterized by myxoid appearance histology and the presence of the FUS-DDIT3 fusion gene. MLPS shows frequent recurrence and poor prognosis after standard treatments, such as surgery. Therefore, novel therapeutic approaches for MLPS are needed. Development of novel treatments requires patient-derived cell lines to study the drug responses and their molecular backgrounds. Presently, only three cell lines of MLPS have been reported, and no line is available from public cell banks. Thus, this study aimed to establish and characterize novel MLPS cell lines. Using surgically resected tumor tissue from two patients with MLPS, two novel lines NCC-MLPS2-C1 and NCC-MLPS3-C1 were established. The presence of FUS-DDIT3 fusion, slow growth, spheroid formation, and invasive capability in these cell lines was confirmed. Growth retardation was monitored for 213 anti-cancer agents using NCC-MLPS2-C1 and NCC-MLPS3-C1 cells, and the results were integrated with the response to treatments in an MLPS cell line, NCC-MLPS1-C1, which was previously established in our laboratory. We found that romidepsin suppressed cell proliferation at considerably low concentrations in all three examined cell lines. NCC-MLPS2-C1 and NCC-MLPS3-C1 cell lines developed here represent a useful tool for basic and preclinical studies of MLPS.


Assuntos
Lipossarcoma Mixoide , Sarcoma , Adulto , Linhagem Celular Tumoral , Proliferação de Células/genética , Fusão Gênica , Humanos , Lipossarcoma Mixoide/genética , Lipossarcoma Mixoide/terapia , Sarcoma/genética
15.
Hum Cell ; 35(3): 936-943, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35292923

RESUMO

Dedifferentiated liposarcoma (DDLPS) is a highly aggressive subtype of liposarcoma that is morphologically defined as a transition from a well-differentiated lipomatous component to a non-lipogenic one. Curative therapy for DDLPS is complete resection, and the benefits of current systemic chemotherapy remain marginal. Although DDLPS is molecularly characterized by co-amplification of MDM2 and CDK4 (12q14-15) and detailed genomic analyses have been conducted by multiple research groups, the effects of molecular targeted drugs are marginal, and novel therapeutic modalities are required. Although patient-derived cell lines are pivotal for cancer research, no DDLPS cell lines are currently available from public cell repositories. Accordingly, in this study, we established a novel DDLPS cell line, NCC-DDLPS5-C1, using surgically resected tumor tissues from a patient with DDLPS. NCC-DDLPS5-C1 cells exhibited typical gene amplification, overexpression of MDM2 and CDK4, and other DNA copy number alterations. The NCC-DDLPS5-C1 cells were capable of rapid cell proliferation, aggressive invasion, and spheroid formation, but not tumor formation in mice. We reported the utility of NCC-DDLPS5-C1 cells for a drug-response assay to detect anticancer drugs that significantly attenuated cell proliferation. Thus, we concluded that the NCC-DDLPS5-C1 cell line could be a useful resource for the study of DDLPS. Considering the diversity of disease in terms of clinical outcomes, continuous efforts are required to develop more patient-derived cancer models with different clinical and pathological backgrounds.


Assuntos
Antineoplásicos , Lipossarcoma , Animais , Antineoplásicos/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Humanos , Lipossarcoma/genética , Lipossarcoma/patologia , Camundongos , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo
16.
Hum Cell ; 35(1): 392-399, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34731453

RESUMO

Giant cell tumor of bone (GCTB) is a rare osteolytic intermediate bone tumor that harbors a pathogenic H3F3A gene mutation and exhibits characteristic histology. The standard curative treatment for GCTB is complete surgical resection, but it frequently results in local recurrence and, more rarely, metastasis. Therefore, effective multidisciplinary treatment is needed. Although patient-derived tumor cell lines are promising tools for preclinical and basic research, there are only four available cell lines for GCTB in public cell banks. Thus, the aim of this study was to establish a novel GCTB cell line. Using surgically resected tumor tissues from a patient with GCTB, we established a cell line named NCC-GCTB4-C1. The cells harbored the typical H3F3A gene mutation and exhibited constant proliferation and invasive capabilities. After characterizing NCC-GCTB4-C1 cell behaviors, we conducted high-throughput screening of 214 anti-tumor drugs and identified seven effective drugs. Comparing the results of high-throughput screening using NCC-GCTB4-C1 cell line with the results using NCC-GCTB1-C1, NCC-GCTB2-C1, and NCC-GCTB3-C1 cell lines that we previously established, four drugs were in common effective. This study showed potential drugs for the treatment of GCTB. These data indicate that NCC-GCTB4-C1 has the potential to be a powerful tool in preclinical and basic research on GCTB.


Assuntos
Neoplasias Ósseas/patologia , Tumor de Células Gigantes do Osso/patologia , Antineoplásicos/farmacologia , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Tumor de Células Gigantes do Osso/genética , Histonas/genética , Humanos , Lipídeos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica
17.
J Pers Med ; 12(2)2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35207746

RESUMO

Pseudomyxoma peritonei (PMP) is the intraperitoneal accumulation of mucus due to a mucinous tumor. PMP predominantly occurs in low-grade carcinomas. The incidence rate of PMP is one to two cases per million people per year. The standard therapy of PMP comprises complete cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. PMP recurs in about 50% of patients, and 30-40% are unable to receive the standard treatment because of its invasiveness. Therefore, novel therapies are of the utmost necessity. For basic and pre-clinical research, patient-derived cell lines are essential resources. However, only two PMP cell lines have been reported. Thus, we established a novel PMP cell line from resected metastatic PMP tissue. The cell line, named NCC-PMP1-C1, was maintained for more than 5 months and was passaged 25 times. NCC-PMP1-C1 cells demonstrated multiple amplifications and deletions, slow growth, tumorigenic ability, and dissemination of tumor cells in nude mice. We also used NCC-PMP1-C1 cells to screen drugs, which demonstrated a significant response to daunorubicin HCl, homoharringtonine, mitomycin C, and ponatinib. The NCC-PMP1-C1 cell line is the first PMP cell line derived from metastasized tissue and will be a potential resource for basic and pre-clinical research of metastasized PMP.

18.
Hum Cell ; 35(6): 1993-2001, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35947340

RESUMO

Myxofibrosarcoma (MFS) is a rare and aggressive mesenchymal malignancy characterized by complex karyotypes with heterogeneous clinical features. The standard treatment for primary MFS is curative resection; however, the utility of systemic chemotherapy and radiotherapy has not been established. Although patient-derived cancer cell lines are a key bioresource for developing novel therapies, the number of MFS cell lines available from public cell banks is limited by the rarity of the disease, and large-scale drug screening has not yet been performed. To address this issue, we aimed to establish and characterize a novel MFS cell line. We successfully established a cell line, NCC-MFS6-C1, which harbors genetic abnormalities common in MFS and exhibits aggressive phenotypes such as continuous growth, spheroid formation, and invasion in tissue culture conditions. We performed drug screening using NCC-MFS6-C1 along with five MFS cell lines established in our laboratory and clarified the response spectrum of 214 existing anticancer agents. We found that two anticancer agents, gemcitabine and romidepsin, showed considerable antiproliferative effects, and these observations were concordant with the findings of our previous report, in which these agents attenuated the proliferation of five previously reported MFS cell lines. We conclude that NCC-MFS6-C1 is a useful resource for studying MFS.


Assuntos
Antineoplásicos , Sarcoma , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Sarcoma/genética
19.
Cells ; 11(2)2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-35053323

RESUMO

Myxofibrosarcoma (MFS) is a highly aggressive malignancy with complex karyotypes and a postoperative recurrence tendency, owing to its strong invasiveness. Although systemic chemotherapy is considered in patients with unresectable MFS, the efficacy of conventional chemotherapy is hitherto unclear. Recently, drug screening analysis using a large number of tumor cell lines has been attempted to discover novel therapeutic candidate drugs for common cancers. However, the number of MFS cell lines is extremely small because of its low incidence-this hinders the conduction of screening studies and slows down the development of therapeutic drugs. To overcome this problem, we established a novel MFS cell line, NCC-MFS5-C1, which was shown to harbor typical MFS genetic abnormalities and thus had useful properties for in vitro studies. We conducted the largest integrated screening analysis of 210 drugs using NCC-MFS5-C1 cells along with four MFS cell lines, which we previously reported. Bortezomib (a proteasome inhibitor) and romidepsin (a histone deacetylase inhibitor) showed stronger antitumor effects than the standard drug, doxorubicin. Therefore, the NCC-MFS5-C1 cell line can potentially contribute to elucidating MFS pathogenesis and developing a novel MFS treatment.


Assuntos
Técnicas de Cultura de Células , Fibrossarcoma/patologia , Animais , Antineoplásicos/farmacologia , Carcinogênese/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Fibrossarcoma/diagnóstico por imagem , Fibrossarcoma/genética , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos Nus , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética
20.
Hum Cell ; 35(4): 1262-1269, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35441357

RESUMO

Ewing sarcoma (ES) is a small round cell sarcoma that is characterized by the unique gene translocation EWSR1-FLI1. It is the second most common primary bone and soft tissue malignancy in children and adolescents. It constitutes 10-15% of all bone sarcomas and is highly aggressive and rapidly recurring. Although intensive treatments have improved the clinical outcome of ES patients, 20-25% of them exhibit metastases during diagnosis. Thus, the prognoses of these patients remain poor. Cell lines are pivotal resources to investigate the molecular background of disease progression and to develop novel therapeutic modalities. In this study, we established and characterized a novel ES cell line, NCC-ES2-C1. The presence of the EWSR1-FLI1 fusion gene in these cells was confirmed in the NCC-ES2-C1 cells. Furthermore, these cells exhibited constant proliferation, and invasion, but did not form tumors in mice. We screened the anti-tumor effects of 214 anti-cancer drugs in NCC-ES2-C1 cells and found that the drugs which effectively reduced the proliferation of NCC-ES2-C1 cells. We concluded that NCC-ES2-C1 cells are a useful resource to study functions of the EWSR1-FLI1 fusion gene, investigate phenotypic changes caused by genes and proteins, and evaluate the anti-tumor effects of novel drugs.


Assuntos
Antineoplásicos , Sarcoma de Ewing , Sarcoma , Adolescente , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Rearranjo Gênico , Humanos , Camundongos , Proteínas de Fusão Oncogênica/genética , Sarcoma/genética , Sarcoma de Ewing/genética , Sarcoma de Ewing/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA