Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Haematologica ; 105(11): 2561-2571, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33131245

RESUMO

Massive expansion of erythroid progenitor cells is essential for surviving anemic stress. Research towards understanding this critical process, referred to as stress-erythropoiesis, has been hampered due to lack of specific marker-combinations enabling analysis of the distinct stress-progenitor cells capable of providing radioprotection and enhanced red blood cell production. Here we present a method for precise identification and in vivo validation of progenitor cells contributing to both steady-state and stress-erythropoiesis, enabling for the first time in-depth molecular characterization of these cells. Differential expression of surface markers CD150, CD9 and Sca1 defines a hierarchy of splenic stress-progenitors during irradiation-induced stress recovery in mice, and provides high-purity isolation of the functional stress-BFU-Es with a 100-fold improved enrichment compared to state-of-the-art. By transplanting purified stress-progenitors expressing the fluorescent protein Kusabira Orange, we determined their kinetics in vivo and demonstrated that CD150+CD9+Sca1- stress-BFU-Es provide a massive but transient radioprotective erythroid wave, followed by multi-lineage reconstitution from CD150+CD9+Sca1+ multi-potent stem/progenitor cells. Whole genome transcriptional analysis revealed that stress-BFU-Es express gene signatures more associated with erythropoiesis and proliferation compared to steady-state BFU-Es, and are BMP-responsive. Evaluation of chromatin accessibility through ATAC sequencing reveals enhanced and differential accessibility to binding sites of the chromatin-looping transcription factor CTCF in stress-BFU-Es compared to steady-state BFU-Es. Our findings offer molecular insight to the unique capacity of stress-BFU-Es to rapidly form erythroid cells in response to anemia and constitute an important step towards identifying novel erythropoiesis stimulating agents.


Assuntos
Eritropoetina , Transcriptoma , Animais , Epigênese Genética , Células Eritroides , Células Precursoras Eritroides , Eritropoese/genética , Camundongos
2.
Cytokine ; 68(2): 101-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24767864

RESUMO

OBJECTIVE: To identify how the gp130-signaling cytokine oncostatin M (OSM), acting alone or in concert with IL-1ß or TNFα, affects synovial fibroblast expression of genes relevant to inflammation and bone erosion in inflammatory arthritis. METHODS: Synovial fibroblasts (SFs) were isolated from non-arthritic wild type (WT) or OSM receptor deficient (OSMR(-/-)) mice and stimulated with OSM, IL-1ß or TNFα and their combinations. Cytokine gene expression was assessed by quantitative RT-PCR. ELISA, flow cytometry and immunohistochemistry identified protein expression. Gene expression patterns were confirmed in SFs isolated from patients with osteoarthritis (OASFs) and rheumatoid arthritis (RASFs). RESULTS: Expression of OSM and its receptors, gp130, OSMR and LIFR, was increased in synovial tissue from the mouse antigen-induced arthritis model. In isolated WT mouse synovial fibroblasts OSM alone, or in synergy with IL-1ß, or together with TNFα, potently induced expression of the pro-inflammatory cytokine IL-6. OSM also induced a sustained increase in mRNA levels of the pro-osteoclastic cytokine RANKL. Combining OSM with IL-1ß, but not with TNFα, further increased RANKL expression. Importantly these effects of OSM were all dependent on the expression of OSMR. Furthermore, OSM also increased expression of its own receptors, gp130 and OSMR and the IL-1 receptor, IL1-R1; the latter effects were also observed in both human OASFs and RASFs. CONCLUSION: Together our data suggests that OSM signaling via OSMR in SFs has the potential to contribute significantly to joint destruction in inflammatory arthritis. It not only induces expression of pro-inflammatory and pro-osteoclastic cytokines but can also augment its own actions and that of IL-1 by inducing expression of OSMR and IL-1R1.


Assuntos
Fibroblastos/metabolismo , Interleucina-1beta/metabolismo , Oncostatina M/metabolismo , Receptores de Oncostatina M/metabolismo , Membrana Sinovial/patologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Artrite Reumatoide/genética , Artrite Reumatoide/patologia , Regulação da Expressão Gênica , Humanos , Interleucina-1beta/genética , Camundongos Endogâmicos C57BL , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Interleucina-1/metabolismo , Receptores de Oncostatina M/deficiência
3.
Haematologica ; 99(4): 647-55, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24415629

RESUMO

The proto-oncogene SKI is highly expressed in human myeloid leukemia and also in murine hematopoietic stem cells. However, its operative relevance in these cells remains elusive. We have over-expressed SKI to define its intrinsic role in hematopoiesis and myeloid neoplasms, which resulted in a robust competitive advantage upon transplantation, a complete dominance of the stem and progenitor compartments, and a marked enhancement of myeloid differentiation at the expense of other lineages. Accordingly, enforced expression of SKI induced a gene signature associated with hematopoietic stem cells and myeloid differentiation, as well as hepatocyte growth factor signaling. Here we demonstrate that, in contrast to what has generally been assumed, the significant impact of SKI on hematopoiesis is independent of its ability to inhibit TGF-beta signaling. Instead, myeloid progenitors expressing SKI are partially dependent on functional hepatocyte growth factor signaling. Collectively our results demonstrate that SKI is an important regulator of hematopoietic stem cell activity and its overexpression leads to myeloproliferative disease.


Assuntos
Proteínas de Ligação a DNA/genética , Células-Tronco Hematopoéticas/metabolismo , Transtornos Mieloproliferativos/genética , Proteínas Proto-Oncogênicas/genética , Animais , Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Eritropoese/genética , Expressão Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Linfopoese/genética , Camundongos , Mielopoese/genética , Transtornos Mieloproliferativos/metabolismo , Fenótipo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Ativação Transcricional , Fator de Crescimento Transformador beta/metabolismo
4.
J Exp Med ; 204(3): 467-74, 2007 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-17353364

RESUMO

Members of the transforming growth factor beta (TGF-beta) superfamily of growth factors have been shown to regulate the in vitro proliferation and maintenance of hematopoietic stem cells (HSCs). Working at a common level of convergence for all TGF-beta superfamily signals, Smad4 is key in orchestrating these effects. The role of Smad4 in HSC function has remained elusive because of the early embryonic lethality of the conventional knockout. We clarify its role by using an inducible model of Smad4 deletion coupled with transplantation experiments. Remarkably, systemic induction of Smad4 deletion through activation of MxCre was incompatible with survival 4 wk after induction because of anemia and histopathological changes in the colonic mucosa. Isolation of Smad4 deletion to the hematopoietic system via several transplantation approaches demonstrated a role for Smad4 in the maintenance of HSC self-renewal and reconstituting capacity, leaving homing potential, viability, and differentiation intact. Furthermore, the observed down-regulation of notch1 and c-myc in Smad4(-/-) primitive cells places Smad4 within a network of genes involved in the regulation HSC renewal.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Hematopoéticas/citologia , Proteína Smad4/fisiologia , Animais , Diferenciação Celular/genética , Regulação para Baixo/genética , Genes Letais , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Imunofenotipagem , Inflamação/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/biossíntese , Receptor Notch1/antagonistas & inibidores , Receptor Notch1/biossíntese , Transdução de Sinais/genética , Proteína Smad4/deficiência , Proteína Smad4/genética , Fator de Crescimento Transformador beta/deficiência , Fator de Crescimento Transformador beta/genética
5.
Blood ; 117(21): 5631-42, 2011 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-21421837

RESUMO

Erythropoietin (Epo) has been used in the treatment of anemia resulting from numerous etiologies, including renal disease and cancer. However, its effects are controversial and the expression pattern of the Epo receptor (Epo-R) is debated. Using in vivo lineage tracing, we document that within the hematopoietic and mesenchymal lineage, expression of Epo-R is essentially restricted to erythroid lineage cells. As expected, adult mice treated with a clinically relevant dose of Epo had expanded erythropoiesis because of amplification of committed erythroid precursors. Surprisingly, we also found that Epo induced a rapid 26% loss of the trabecular bone volume and impaired B-lymphopoiesis within the bone marrow microenvironment. Despite the loss of trabecular bone, hematopoietic stem cell populations were unaffected. Inhibition of the osteoclast activity with bisphosphonate therapy blocked the Epo-induced bone loss. Intriguingly, bisphosphonate treatment also reduced the magnitude of the erythroid response to Epo. These data demonstrate a previously unrecognized in vivo regulatory network coordinating erythropoiesis, B-lymphopoiesis, and skeletal homeostasis. Importantly, these findings may be relevant to the clinical application of Epo.


Assuntos
Linfócitos B/metabolismo , Medula Óssea/efeitos dos fármacos , Osso e Ossos/metabolismo , Eritropoese/fisiologia , Eritropoetina/farmacologia , Homeostase , Linfopoese/fisiologia , Animais , Medula Óssea/metabolismo , Remodelação Óssea/fisiologia , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Eritroblastos/metabolismo , Citometria de Fluxo , Expressão Gênica , Humanos , Masculino , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores da Eritropoetina/metabolismo , Proteínas Recombinantes , Baço/citologia , Baço/metabolismo
6.
Blood ; 115(23): 4689-98, 2010 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-20371744

RESUMO

Numerous publications have described the importance of bone morphogenetic protein (BMP) signaling in the specification of hematopoietic tissue in developing embryos. Here we investigate the full role of canonical BMP signaling in both adult and fetal liver hematopoiesis using conditional knockout strategies because conventional disruption of components of the BMP signaling pathway result in early death of the embryo. By targeting both Smad1 and Smad5, we have generated a double-knockout mouse with complete disruption of canonical BMP signaling. Interestingly, concurrent deletion of Smad1 and Smad5 results in death because of extrahematopoietic pathologic changes in the colon. However, Smad1/Smad5-deficient bone marrow cells can compete normally with wild-type cells and display unaffected self-renewal and differentiation capacity when transplanted into lethally irradiated recipients. Moreover, although BMP receptor expression is increased in fetal liver, fetal liver cells deficient in both Smad1 and Smad5 remain competent to long-term reconstitute lethally irradiated recipients in a multilineage manner. In conclusion, canonical BMP signaling is not required to maintain either adult or fetal liver hematopoiesis, despite its crucial role in the initial patterning of hematopoiesis in early embryonic development.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Feto/embriologia , Hematopoese Extramedular/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Fígado/embriologia , Transdução de Sinais/fisiologia , Animais , Receptores de Proteínas Morfogenéticas Ósseas/biossíntese , Receptores de Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/genética , Diferenciação Celular/fisiologia , Colo/embriologia , Colo/metabolismo , Perda do Embrião/genética , Perda do Embrião/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Transplante de Células-Tronco Hematopoéticas , Fígado/metabolismo , Camundongos , Camundongos Knockout , Proteína Smad1/genética , Proteína Smad1/metabolismo , Proteína Smad5/genética , Proteína Smad5/metabolismo , Transplante Homólogo
7.
J Cell Biochem ; 112(6): 1486-90, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21503954

RESUMO

Understanding the in vivo regulation of hematopoietic stem cells (HSCs) will be critical to identifying key factors involved in the regulation of HSC self-renewal and differentiation. The niche (microenvironment) in which HSCs reside has recently regained attention accompanied by a dramatic increase in the understanding of the cellular constituents of the bone marrow HSC niche. The use of sophisticated genetic models allowing modulation of specific lineages has demonstrated roles for mesenchymal-derived elements such as osteoblasts and adipocytes, vasculature, nerves, and a range of hematopoietic progeny of the HSC as being participants in the regulation of the bone marrow microenvironment. Whilst providing significant insight into the cellular composition of the niche, is it possible to manipulate any given cell lineage in vivo without impacting, knowingly or unknowingly, on those that remain?


Assuntos
Células-Tronco Hematopoéticas/citologia , Nicho de Células-Tronco/citologia , Animais , Células da Medula Óssea/citologia , Humanos , Camundongos
8.
Sci Rep ; 11(1): 17129, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429458

RESUMO

Production of red blood cells relies on proper mitochondrial function, both for their increased energy demands during differentiation and for proper heme and iron homeostasis. Mutations in genes regulating mitochondrial function have been reported in patients with anemia, yet their pathophysiological role often remains unclear. PGC1ß is a critical coactivator of mitochondrial biogenesis, with increased expression during terminal erythroid differentiation. The role of PGC1ß has however mainly been studied in skeletal muscle, adipose and hepatic tissues, and its function in erythropoiesis remains largely unknown. Here we show that perturbed PGC1ß expression in human hematopoietic stem/progenitor cells from both bone marrow and cord blood results in impaired formation of early erythroid progenitors and delayed terminal erythroid differentiation in vitro, with accumulations of polychromatic erythroblasts, similar to MDS-related refractory anemia. Reduced levels of PGC1ß resulted in deregulated expression of iron, heme and globin related genes in polychromatic erythroblasts, and reduced hemoglobin content in the more mature bone marrow derived reticulocytes. Furthermore, PGC1ß knock-down resulted in disturbed cell cycle exit with accumulation of erythroblasts in S-phase and enhanced expression of G1-S regulating genes, with smaller reticulocytes as a result. Taken together, we demonstrate that PGC1ß is directly involved in production of hemoglobin and regulation of G1-S transition and is ultimately required for proper terminal erythroid differentiation.


Assuntos
Células Eritroides/metabolismo , Eritropoese , Proteínas de Ligação a RNA/metabolismo , Ciclo Celular , Células Cultivadas , Células Eritroides/citologia , Hemoglobinas/metabolismo , Humanos , Proteínas de Ligação a RNA/genética
9.
Sci Rep ; 11(1): 15898, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354145

RESUMO

The YPEL family genes are highly conserved across a diverse range of eukaryotic organisms and thus potentially involved in essential cellular processes. Ypel4, one of five YPEL family gene orthologs in mouse and human, is highly and specifically expressed in late terminal erythroid differentiation (TED). In this study, we investigated the role of Ypel4 in murine erythropoiesis, providing for the first time an in-depth description of a Ypel4-null phenotype in vivo. We demonstrated that the Ypel4-null mice displayed a secondary polycythemia with macro- and reticulocytosis. While lack of Ypel4 did not affect steady-state TED in the bone marrow or spleen, the anemia-recovering capacity of Ypel4-null cells was diminished. Furthermore, Ypel4-null red blood cells (RBC) were cleared from the circulation at an increased rate, demonstrating an intrinsic defect of RBCs. Scanning electron micrographs revealed an ovalocytic morphology of Ypel4-null RBCs and functional testing confirmed reduced deformability. Even though Band 3 protein levels were shown to be reduced in Ypel4-null RBC membranes, we could not find support for a physical interaction between YPEL4 and the Band 3 protein. In conclusion, our findings provide crucial insights into the role of Ypel4 in preserving normal red cell membrane integrity.


Assuntos
Proteínas de Transporte/genética , Membrana Eritrocítica/fisiologia , Eritropoese/genética , Anemia/metabolismo , Animais , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Proteínas de Transporte/metabolismo , Membrana Eritrocítica/genética , Eritrócitos/metabolismo , Eritrócitos Anormais/metabolismo , Eritropoese/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Policitemia/genética , Baço
10.
Exp Hematol ; 88: 28-41, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32629063

RESUMO

Erythropoiesis is intimately coupled to cell division, and deletion of the cell cycle regulator retinoblastoma protein (pRb) causes anemia in mice. Erythroid-specific deletion of pRb has been found to result in inefficient erythropoiesis because of deregulated coordination of cell cycle exit and mitochondrial biogenesis. However, the pathophysiology remains to be fully described, and further characterization of the link between cell cycle regulation and mitochondrial function is needed. To this end we further assessed conditional erythroid-specific deletion of pRb. This resulted in macrocytic anemia, despite elevated levels of erythropoietin (Epo), and an accumulation of erythroid progenitors in the bone marrow, a phenotype strongly resembling refractory anemia associated with myelodysplastic syndromes (MDS). Using high-fractionation fluorescence-activated cell sorting analysis for improved phenotypic characterization, we illustrate that erythroid differentiation was disrupted at the orthochromatic stage. Transcriptional profiling of sequential purified populations revealed failure to upregulate genes critical for mitochondrial function such as Pgc1ß, Alas2, and Abcb7 specifically at the block, together with disturbed heme production and iron transport. Notably, deregulated ABCB7 causes ring sideroblastic anemia in MDS patients, and the mitochondrial co-activator PGC1ß is heterozygously lost in del5q MDS. Importantly, the anemia could be rescued through enhanced PPAR signaling in vivo via either overexpression of Pgc1ß or bezafibrate administration. In conclusion, lack of pRb results in MDS-like anemia with disrupted differentiation and impaired mitochondrial function at the orthochromatic erythroblast stage. Our findings reveal for the first time a role for pRb in heme and iron regulation, and indicate that pRb-induced anemia can be rescued in vivo through therapeutic enhancement of PPAR signaling.


Assuntos
Anemia/metabolismo , Eritroblastos/metabolismo , Eritropoese , Mitocôndrias/metabolismo , Síndromes Mielodisplásicas/metabolismo , Proteína do Retinoblastoma/deficiência , Anemia/genética , Anemia/patologia , Animais , Eritroblastos/patologia , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/patologia , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Proteína do Retinoblastoma/metabolismo
11.
Stem Cells ; 25(11): 2809-19, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17673527

RESUMO

Endoglin is a transforming growth factor-beta (TGF-beta) accessory receptor recently identified as being highly expressed on long-term repopulating hematopoietic stem cells (HSC). However, little is known regarding its function in these cells. We have used two complementary approaches toward understanding endoglin's role in HSC biology: one that efficiently knocks down expression via lentiviral-driven short hairpin RNA and another that uses retroviral-mediated overexpression. Altering endoglin expression had functional consequences for hematopoietic progenitors in vitro such that endoglin-suppressed myeloid progenitors (colony-forming unit-granulocyte macrophage) displayed a higher degree of sensitivity to TGF-beta-mediated growth inhibition, whereas endoglin-overexpressing cells were partially resistant. However, transplantation of transduced bone marrow enriched in primitive hematopoietic stem and progenitor cells revealed that neither endoglin suppression nor endoglin overexpression affected the ability of stem cells to short-term or long-term repopulate recipient marrow. Furthermore, transplantation of cells altered in endoglin expression yielded normal white blood cell proportions and peripheral blood platelets. Interestingly, decreasing endoglin expression increased the clonogenic capacity of early blast-forming unit-erythroid progenitors, whereas overexpression compromised erythroid differentiation at the basophilic erythroblast phase, suggesting a pivotal role for endoglin at key stages of adult erythropoietic development.


Assuntos
Envelhecimento/fisiologia , Eritropoese/fisiologia , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Endoglina , Células HeLa , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/citologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células NIH 3T3
12.
Exp Hematol ; 54: 4-11, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28757433

RESUMO

The hematopoietic system is responsible for transporting oxygen and nutrients, fighting infections, and repairing tissue damage. Hematopoietic system dysfunction therefore causes a range of serious health consequences. Lifelong hematopoiesis is maintained by repopulating multipotent hematopoietic stem cells (HSCs) that replenish shorter-lived, mature blood cell types. A prokaryotic mechanism of immunity, the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 nuclease system, has been recently "repurposed" to mutate mammalian genomes efficiently and in a sequence-specific manner. The application of this genome-editing technology to hematology has afforded new approaches for functional genomics and even the prospect of "correcting" dysfunctional HSCs in the treatment of serious genetic hematological diseases. In this Perspective, we provide an overview of three recent CRISPR/Cas9 methods in hematology: gene disruption, gene targeting, and saturating mutagenesis. We also summarize the technical considerations and advice provided during the May 2017 International Society of Experimental Hematology New Investigator Committee webinar on the same topic.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Marcação de Genes/métodos , Genoma , Hematologia/métodos , Mutagênese , Animais , Biologia Computacional , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Hematopoese/genética , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo
13.
Exp Hematol ; 50: 22-26, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28189651

RESUMO

Hematopoietic stem cells (HSCs) reside in specialized microenvironments known as niches. The niche is essential to support HSC function and to maintain a correct balance between self-renewal and differentiation. Recent advances in defining different mesenchymal and endothelial bone marrow cell populations, as well as hematopoietic stem and progenitor cells, greatly enhanced our understanding of these niches and of the molecular mechanisms by which they regulate HSC function. In addition to the role in maintaining HSC homeostasis, the niche has also been implicated in the pathogenesis of blood disorders including hematological malignancies. Characterizing the extrinsic regulators and the cellular context in which the niches interact with HSCs will be crucial to define new strategies to enhance blood regeneration. Furthermore, a better understanding of the role of the niche in leukemia development will open new possibilities for the treatment of these disorders by using therapies aiming to target the leukemic niche specifically. To update on recent findings on this topic, the International Society for Experimental Hematology (ISEH) organized a webinar, presented by Prof. Sean J. Morrison and Dr. Simón Méndez-Ferrer and moderated by Dr. Cristina Lo Celso, entitled "The evolving view of the hematopoietic stem cell niche," which we summarize here.


Assuntos
Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Nicho de Células-Tronco/fisiologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/fisiologia , Diferenciação Celular , Suscetibilidade a Doenças , Hematopoese , Homeostase , Humanos , Osteogênese
14.
Cell Rep ; 15(11): 2550-62, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27264182

RESUMO

Erythroid cell commitment and differentiation proceed through activation of a lineage-restricted transcriptional network orchestrated by a group of well characterized genes. However, the minimal set of factors necessary for instructing red blood cell (RBC) development remains undefined. We employed a screen for transcription factors allowing direct lineage reprograming from fibroblasts to induced erythroid progenitors/precursors (iEPs). We show that Gata1, Tal1, Lmo2, and c-Myc (GTLM) can rapidly convert murine and human fibroblasts directly to iEPs. The transcriptional signature of murine iEPs resembled mainly that of primitive erythroid progenitors in the yolk sac, whereas addition of Klf1 or Myb to the GTLM cocktail resulted in iEPs with a more adult-type globin expression pattern. Our results demonstrate that direct lineage conversion is a suitable platform for defining and studying the core factors inducing the different waves of erythroid development.


Assuntos
Linhagem da Célula , Eritropoese , Fatores de Transcrição/metabolismo , Envelhecimento , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Reprogramação Celular/genética , Ensaio de Unidades Formadoras de Colônias , Eritroblastos/citologia , Eritroblastos/metabolismo , Eritropoese/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Globinas/genética , Globinas/metabolismo , Humanos , Camundongos Endogâmicos C57BL
15.
Exp Hematol ; 43(9): 756-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26143581

RESUMO

Transplantation of hematopoietic stem cells (HSCs) to treat hematologic disorders is routinely used in the clinic. However, HSC therapy is hindered by the requirements of finding human leukocyte antigen (HLA)-matched donors and attaining sufficient numbers of long-term HSCs in the graft. Therefore, ex vivo expansion of transplantable HSCs remains one of the "holy grails" of hematology. Without the ability to maintain and expand human HSCs in vitro, two complementary approaches involving cellular reprogramming to generate transplantable HSCs have emerged. Reprogrammed HSCs represent a potentially inexhaustible supply of autologous tissue. On March 18th, 2015, Dr. George Q. Daley and Dr. Derrick J. Rossi, two pioneers in the field, presented and discussed their most recent research on these topics in a webinar organized by the International Society for Experimental Hematology (ISEH). Here, we summarize these seminars and discuss the possibilities and challenges in the field of hematopoietic specification.


Assuntos
Doenças Hematológicas , Células-Tronco Hematopoéticas , Células-Tronco Pluripotentes , Animais , Reprogramação Celular , Doenças Hematológicas/genética , Doenças Hematológicas/metabolismo , Doenças Hematológicas/patologia , Doenças Hematológicas/terapia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/patologia
16.
Genom Data ; 2: 189-91, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26484093

RESUMO

The proto-oncogene SKI is highly expressed in human myeloid leukemia and also in murine hematopoietic stem cells. However, its operative relevance in these cells remains elusive. We have over-expressed SKI to define its intrinsic role in hematopoiesis and myeloid neoplasms, which resulted in a robust competitive advantage upon transplantation, a complete dominance of the stem and progenitor compartments, and a marked enhancement of myeloid differentiation at the expense of other lineages. Accordingly, enforced expression of SKI induced gene signatures associated with hematopoietic stem cells and myeloid differentiation. Here we provide detailed experimental methods and analysis for the gene expression profiling described in our recently published study of Singbrant et al. (2014) in Haematologica. Our data sets (available at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39457) provide a resource for exploring the underlying molecular mechanisms of the involvement of the proto-oncogene SKI in hematopoietic stem cell function and development of myeloid neoplasms.

17.
Blood ; 108(12): 3707-12, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16896158

RESUMO

Smad5 is known to transduce intracellular signals from bone morphogenetic proteins (BMPs), which belong to the transforming growth factor-beta (TGF-beta) superfamily and are involved in the regulation of hematopoiesis. Recent findings suggest that BMP4 stimulates proliferation of human primitive hematopoietic progenitors in vitro, while early progenitors from mice deficient in Smad5 display increased self-renewal capacity in murine embryonic hematopoiesis. Here, we evaluate the role of Smad5 in the regulation of hematopoietic stem cell (HSC) fate decisions in adult mice by using an inducible MxCre-mediated conditional knockout model. Surprisingly, analysis of induced animals revealed unperturbed cell numbers and lineage distribution in peripheral blood (PB), bone marrow (BM), and the spleen. Furthermore, phenotypic characterization of the stem cell compartment revealed normal numbers of primitive lin(-)Sca-1(+)c-Kit(+) (LSK) cells in Smad5(-)(/)(-) BM. When transplanted in a competitive fashion into lethally irradiated primary and secondary recipients, Smad5-deficient BM cells competed normally with wild-type (wt) cells, were able to provide long-term reconstitution for the hosts, and displayed normal lineage distribution. Taken together, Smad5-deficient HSCs from adult mice show unaltered differentiation, proliferation, and repopulating capacity. Therefore, in contrast to its role in embryonic hematopoiesis, Smad5 is dispensable for hematopoiesis in the adult mouse.


Assuntos
Diferenciação Celular , Proliferação de Células , Hematopoese , Células-Tronco Hematopoéticas/fisiologia , Proteína Smad5/metabolismo , Animais , Antígenos de Diferenciação/metabolismo , Medula Óssea/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Hematopoese/genética , Hematopoese/efeitos da radiação , Células-Tronco Hematopoéticas/citologia , Contagem de Leucócitos , Camundongos , Camundongos Knockout , Proteína Smad5/deficiência , Baço/citologia , Baço/fisiologia , Transplante de Células-Tronco/métodos , Quimeras de Transplante/fisiologia , Irradiação Corporal Total/métodos
18.
Blood ; 108(13): 4246-54, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16917010

RESUMO

The Smad-signaling pathway downstream of the transforming growth factor-beta superfamily of ligands is an evolutionarily conserved signaling circuitry with critical functions in a wide variety of biologic processes. To investigate the role of this pathway in the regulation of hematopoietic stem cells (HSCs), we have blocked Smad signaling by retroviral gene transfer of the inhibitory Smad7 to murine HSCs. We report here that the self-renewal capacity of HSCs is promoted in vivo upon blocking of the entire Smad pathway, as shown by both primary and secondary bone marrow (BM) transplantations. Importantly, HSCs overexpressing Smad7 have an unperturbed differentiation capacity as evidenced by normal contribution to both lymphoid and myeloid cell lineages, suggesting that the Smad pathway regulates self-renewal independently of differentiation. Moreover, phosphorylation of Smads was inhibited in response to ligand stimulation in BM cells, thus verifying impairment of the Smad-signaling cascade in Smad7-overexpressing cells. Taken together, these data reveal an important and previously unappreciated role for the Smad-signaling pathway in the regulation of self-renewal of HSCs in vivo.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células , Células Progenitoras Mieloides/fisiologia , Transdução de Sinais/fisiologia , Proteína Smad7/metabolismo , Animais , Células Cultivadas , Expressão Gênica , Ligantes , Camundongos , Células Progenitoras Mieloides/citologia , Fosforilação , Processamento de Proteína Pós-Traducional/fisiologia , Proteína Smad7/antagonistas & inibidores , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA