Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Plant Physiol ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046110

RESUMO

Plants adapt to changing environmental conditions by adjusting their growth physiology. Nitrate (NO3-) and ammonium (NH4+) are the major inorganic nitrogen forms for plant uptake. However, high NH4+ inhibits plant growth, and roots undergo striking changes, such as inhibition of cell expansion and division, leading to reduced root elongation. In this work, we show that high NH4+ modulates nitrogen metabolism and root developmental physiology by inhibiting iron (Fe)-dependent Jasmonate (JA) signaling and response in Arabidopsis (Arabidopsis thaliana). Transcriptomic data suggested that NH4+ availability regulates Fe and JA-responsive genes. High NH4+ levels led to enhanced root Fe accumulation, which impaired nitrogen balance and growth by suppressing JA biosynthesis and signaling response. Integrating pharmacological, physiological, and genetic experiments revealed the involvement of NH4+ and Fe-derived responses in regulating root growth and nitrogen metabolism through modulation of the JA pathway during NH4+ stress. The JA signaling transcription factor MYC2 directly bound the promoter of the NITRATE TRANSPORTER 1.1 (NRT1.1) and repressed it to optimize the NH4+/Fe-JA balance for plant adaptation during NH4+ stress. Our findings illustrate the intricate balance between nutrient and hormone-derived signaling pathways that appear essential for optimizing plant growth by adjusting physiological and metabolic responses during NH4+/Fe stress.

2.
Plant Physiol ; 189(3): 1757-1773, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35377445

RESUMO

The coordinated signaling activity of auxin and brassinosteroids (BRs) is critical for optimal plant growth and development. Nutrient-derived signals regulate root growth by modulating the levels and spatial distribution of growth hormones to optimize nutrient uptake and assimilation. However, the effect of the interaction of these two hormones and their signaling on root plasticity during low and differential availability of nitrogen (N) forms (NH4+/NO3-) remains elusive. We demonstrate that root elongation under low N (LN) is an outcome of the interdependent activity of auxin and BR signaling pathways in Arabidopsis (Arabidopsis thaliana). LN promotes root elongation by increasing BR-induced auxin transport activity in the roots. Increased nuclear auxin signaling and its transport efficiency have a distinct impact on root elongation under LN conditions. High auxin levels reversibly inhibit BR signaling via BRI1 KINASE INHIBITOR1. Using the tissue-specific approach, we show that BR signaling from root vasculature (stele) tissues is sufficient to promote cell elongation and, hence, root growth under LN condition. Further, we show that N form-defined root growth attenuation or enhancement depends on the fine balance of BR and auxin signaling activity. NH4+ as a sole N source represses BR signaling and response, which in turn inhibits auxin response and transport, whereas NO3- promotes root elongation in a BR signaling-dependent manner. In this study, we demonstrate the interplay of auxin and BR-derived signals, which are critical for root growth in a heterogeneous N environment and appear essential for root N foraging response and adaptation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Regulação da Expressão Gênica de Plantas , Hormônios/metabolismo , Hormônios/farmacologia , Ácidos Indolacéticos/metabolismo , Nitrogênio/metabolismo , Raízes de Plantas/metabolismo
3.
Plant Physiol ; 182(3): 1387-1403, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31949029

RESUMO

Deficiency of water and phosphate induce lignin deposition in roots. LACCASEs, a family of cell wall-localized multicopper oxidases, are involved in lignin biosynthesis. We demonstrate here that LACCASE2 (LAC2) acts as a negative regulator of lignin deposition in root vascular tissues during water deficit. An Arabidopsis (Arabidopsis thaliana) transfer DNA insertion mutant of LAC2 displayed a short primary root and high lignin deposition in root vascular tissues. However, restoration of LAC2 expression rescued these phenotypes. LAC2 expression was significantly down-regulated under water deficit and posttranscriptionally regulated by microRNA397b (miR397b) in roots under normal and water-deficit conditions. Down-regulation of miR397b activity increased LAC2 expression and root length, and decreased lignin content in root vasculature. Similarly, phosphate (Pi) deficiency inversely affected miR397b and LAC2 expression. Lignin deposition in the root elongation zone under Pi-limited conditions was dependent on LAC2 expression. Localized iron accumulation and callose deposition in the root elongation zone under Pi deficiency increased with LAC2-dependent lignification, suggesting a direct relationship between these processes. Our study reveals a regulatory role for the miR397b-LAC2 module in root lignification during water and phosphate deficiency.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fosfatos/metabolismo , Raízes de Plantas/metabolismo , Água/metabolismo , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo
4.
Plant Biotechnol J ; 17(7): 1458-1470, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30623549

RESUMO

The expression of insecticidal proteins under constitutive promoters in transgenic plants is fraught with problems like developmental abnormalities, yield drag, expression in unwanted tissues, and seasonal changes in expression. RbPCD1pro, a rapid, early acting wound-inducible promoter from rose that is activated within 5 min of wounding, was isolated and characterized. Wounding increased transcript levels up to 150 and 500 folds within 5 and 20 min coupled with high translation as seen by histochemical GUS enzyme activity within 5-20 min. RbPCD1pro was activated by both sucking and chewing insects and showed wound-inducible expression in various aerial tissues of plants representing commercially important dicot and monocot families. The promoter showed no expression in any vegetative tissue except upon wounding. Functionality of RbPCD1pro was tested by its ability to drive expression of the insecticidal protein gene cryIAc in transgenic Arabidopsis and tomato. Strong wound-inducible CryIAc expression was observed in both plants that increased 100-350 fold (Arabidopsis) and 280-600 fold (tomato) over the unwounded background within 5 min and over 1000-1600 fold within 20 min. The unwounded background level was just 3-6% of the CaMV35S promoter while wound-induced expression was 5-27 folds higher than the best CaMV35S line in just 5 min and 80-fold higher in 20 min. Transgenic plants showed strong resistance even to larger fourth instar larvae of H. armigera and no abnormalities in development and general plant growth. This is one of the earliest acting promoters with wide biotechnological application across monocot and dicot plants.


Assuntos
Arabidopsis , Proteínas de Bactérias/genética , Endotoxinas/genética , Proteínas Hemolisinas/genética , Insetos , Regiões Promotoras Genéticas , Solanum lycopersicum , Animais , Toxinas de Bacillus thuringiensis , Regulação da Expressão Gênica de Plantas , Herbivoria , Plantas Geneticamente Modificadas
5.
Plant Physiol ; 166(2): 678-88, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25136063

RESUMO

Plants feature remarkable developmental plasticity, enabling them to respond to and cope with environmental cues, such as limited availability of phosphate, an essential macronutrient for all organisms. Under this condition, Arabidopsis (Arabidopsis thaliana) roots undergo striking morphological changes, including exhaustion of the primary meristem, impaired unidirectional cell expansion, and elevated density of lateral roots, resulting in shallow root architecture. Here, we show that the activity of two homologous brassinosteroid (BR) transcriptional effectors, BRASSINAZOLE RESISTANT1 (BZR1) and BRASSINOSTEROID INSENSITIVE1-ETHYL METHANESULFONATE-SUPPRESSOR1 (BES1)/BZR2, blocks these responses, consequently maintaining normal root development under low phosphate conditions without impacting phosphate homeostasis. We show that phosphate deprivation shifts the intracellular localization of BES1/BZR2 to yield a lower nucleus-to-cytoplasm ratio, whereas replenishing the phosphate supply reverses this ratio within hours. Phosphate deprivation reduces the expression levels of BR biosynthesis genes and the accumulation of the bioactive BR 28-norcastasterone. In agreement, low and high BR levels sensitize and desensitize root response to this adverse condition, respectively. Hence, we propose that the environmentally controlled developmental switch from deep to shallow root architecture involves reductions in BZR1 and BES1/BZR2 levels in the nucleus, which likely play key roles in plant adaptation to phosphate-deficient environments.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Nucleares/metabolismo , Fosfatos/metabolismo , Arabidopsis/crescimento & desenvolvimento , Citoplasma/metabolismo , Proteínas de Ligação a DNA , Homeostase
6.
J Exp Bot ; 66(4): 1123-32, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25673814

RESUMO

Brassinosteroid activity controls plant growth and development, often in a seemingly opposing or complex manner. Differential impact of the hormone and its signalling components, acting both as promoters and inhibitors of organ growth, is exemplified by meristem differentiation and cell expansion in above- and below-ground organs. Complex brassinosteroid-based control of stomata count and lateral root development has also been demonstrated. Here, mechanisms underlying these phenotypic outputs are examined. Among these, studies uncovering core brassinosteroid signalling components, which integrate with distinct peptide, hormone, and environmental pathways, are reviewed. Finally, the differential spatiotemporal context of brassinosteroid activity within the organ, as an important determinant of controlled growth, is discussed.


Assuntos
Brassinosteroides/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Desenvolvimento Vegetal/genética , Reguladores de Crescimento de Plantas/metabolismo , Plantas/genética , Ciclo Celular , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Plantas/metabolismo , Transdução de Sinais
7.
Plant Sci ; 342: 112024, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38325661

RESUMO

Plant growth relies on the mineral nutrients present in the rhizosphere. The distribution of nutrients in soils varies depending on their mobility and capacity to bind with soil particles. Consequently, plants often encounter either low or high levels of nutrients in the rhizosphere. Plant roots are the essential organs that sense changes in soil mineral content, leading to the activation of signaling pathways associated with the adjustment of plant architecture and metabolic responses. During differential availability of minerals in the rhizosphere, plants trigger adaptation strategies such as cellular remobilization of minerals, secretion of organic molecules, and the attenuation or enhancement of root growth to balance nutrient uptake. The interdependency, availability, and uptake of minerals, such as phosphorus (P), iron (Fe), zinc (Zn), potassium (K), nitrogen (N) forms, nitrate (NO3-), and ammonium (NH4+), modulate the root architecture and metabolic functioning of plants. Here, we summarized the interactions of major nutrients (N, P, K, Fe, Zn) in shaping root architecture, physiological responses, genetic components involved, and address the current challenges associated with nutrient-nutrient interactions. Furthermore, we discuss the major gaps and opportunities in the field for developing plants with improved nutrient uptake and use efficiency for sustainable agriculture.


Assuntos
Plantas , Solo , Plantas/metabolismo , Agricultura , Minerais/metabolismo , Nutrientes , Raízes de Plantas/metabolismo
8.
Food Chem ; 371: 131126, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34583176

RESUMO

Organophosphates and carbamates pesticides are widely used to increase crop production globally causing a threat to human health and the environment. A variety of pesticides are applied during different stages of vegetable production. Therefore, monitoring the presence of pesticide residues in food and soil has great relevance to sensitive pesticide detection through distinct determination methods that are urgently required. Conventional techniques for the detection of pesticides have several limitations that can be overcome by the development of highly sensitive, fast, reliable and easy-to-use electrochemical biosensors. Herein, we describe the types of biosensors with the main focus on electrochemical biosensors fabricated for the detection of OPPs and carbamates pesticides. An overview of conventional techniques employed for pesticide detection is also discussed. This review aims to provide a glance of recently developed biosensors for some common pesticides like chlorpyrifos, malathion, parathion, paraoxon, and carbaryl which are present in food and environment samples.


Assuntos
Técnicas Biossensoriais , Paration , Resíduos de Praguicidas , Praguicidas , Humanos , Praguicidas/análise , Verduras
9.
J Exp Bot ; 62(14): 5091-103, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21765161

RESUMO

Abscission is a process that involves shedding of plant organs from the main plant body. In this study it is shown that the process of petal separation in the fragrant rose, Rosa bourboniana, is accompanied by the expression of two xyloglucan endotransglucosylase/hydrolase genes, RbXTH1 and RbXTH2. The sequences of the two genes show 52% amino acid identity but are conserved at the catalytic site. The genes are up-regulated soon after the initiation of the abscission process and their transcription is associated with the progression of abscission, being faster in ethylene-treated flowers but slower during field abscission. Transcription is ethylene responsive, with the ethylene response being tissue-specific for RbXTH1 but largely tissue-independent for RbXTH2. Expression is correlated with an increase in xyloglucan endotransglucosylase (XET) action in petal abscission zones of both ethylene-treated and field abscising flowers. Proximal promoters of both the genes drive ß-glucuronidase expression in an ethylene-responsive and abscission-related manner in agrobacteria-infiltrated rose petals, indicating that cis-elements governing ethylene-responsive and abscission-related expression probably lie within the first 700 nucleotides upstream of the translational initiation codon. The results show that cell wall remodelling of the xyloglucan moieties through the XET action of XTHs may be important for cell separation during abscission.


Assuntos
Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Glicosiltransferases/genética , Proteínas de Plantas/genética , Rosa/enzimologia , Sequência de Aminoácidos , Etilenos/metabolismo , Flores/enzimologia , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Rosa/genética , Rosa/crescimento & desenvolvimento , Rosa/metabolismo , Alinhamento de Sequência
10.
Plant Sci ; 296: 110474, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32540004

RESUMO

Brassinosteroids (BRs) are well-characterized growth hormones that are critical for plant growth, development, and productivity. Genetic and molecular studies have revealed the key components of BR biosynthesis and signaling pathways. The membrane-localized BR signaling receptor, BRASSINOSTEROID INSENSITIVE1 (BRI1) binds directly to its ligand and initiates series of signaling events that led to the activation of BR transcriptional regulators, BRASSINAZOLE RESISTANT1 (BZR1) and BRI1-ETHYL METHANESULFONATE-SUPPRESSOR1 (BES1/BZR2) to regulate the cellular processes. Insights from Arabidopsis research revealed tissue and cell type-specific roles of BR in controlling cell elongation and maintenance of stem cell niche in roots. More recently, BRs have gained much attention in regulating the root growth during nutrient deficiency such as nitrogen, phosphorus, and boron. Differential distribution of nutrients in the rhizosphere alters BR hormone levels and signaling to reprogram spatial distribution of root system architecture (RSA) such as a change in primary root growth, lateral root numbers, length, and angle, root hair formation and elongation. These morpho-physiological changes in RSA are also known as an adaptive root trait or foraging response of the plant. In this review, we highlight the role of BRs in regulating RSA to increase root foraging response during fluctuating nutrient availability.


Assuntos
Brassinosteroides/metabolismo , Fenômenos Fisiológicos Vegetais , Raízes de Plantas/metabolismo , Transdução de Sinais
11.
Int J Biol Macromol ; 164: 3943-3952, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882280

RESUMO

Forensic Science Laboratories usually receive numerous cases of suicidal, accidental, and homicidal poisoning most often involving organophosphorus (OP) pesticides. The toxicity of the OP pesticides arises due to their ability to inhibit the activity of acetylcholinesterase (AChE), a cholinergic enzyme that is essential for the proper functioning of the central nervous system. Conventional techniques which are currently in use for pesticide detection are time-consuming, need upskilled technicians as well as suffer from low sensitivity. Therefore, the more rapid and sensitive electrochemical biosensors based on the principle of AChE enzyme inhibition have emerged out to be a simple and promising alternative to the conventional techniques. Since, most of the time, the poison isolated from biological material in poisoning cases is in nM quantities, an attempt has been made for the development of biosensor with enhanced sensitivity in the nM range using reduced graphene oxide (rGO) and zinc oxide nanoflowers (ZnONFs). The rGO and ZnONFs were synthesized chemically and deposited electrochemically on the Au electrode. AChE was immobilized onto this prepared nano-interface (ZnONFs/rGO/Au) through chitosan and glutaraldehyde cross-linking. The fabricated sensor was characterized step by step with cyclic voltammogram and electrochemical impedance spectroscopy. This advanced nanomaterials based techniques has been explored for detecting pesticides in visceral samples. The limit of detection (LOD) for the present sensor was 0.01 nM for OP pesticides.


Assuntos
Acetilcolinesterase/química , Técnicas Biossensoriais , Técnicas Eletroquímicas , Nanoestruturas/química , Praguicidas/análise , Acetilcolinesterase/metabolismo , Fenômenos Químicos , Inibidores da Colinesterase , Enzimas Imobilizadas , Praguicidas/química , Praguicidas/farmacologia , Óxido de Zinco/química
12.
Sci Rep ; 10(1): 17196, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33057097

RESUMO

Flowers of fragrant roses such as Rosa bourboniana are ethylene-sensitive and undergo rapid petal abscission while hybrid roses show reduced ethylene sensitivity and delayed abscission. To understand the molecular mechanism underlying these differences, a comparative transcriptome of petal abscission zones (AZ) of 0 h and 8 h ethylene-treated flowers from R. bourboniana was performed. Differential regulation of 3700 genes (1518 up, 2182 down) representing 8.5% of the AZ transcriptome was observed between 0 and 8 h ethylene-treated R. bourboniana petal AZ. Abscission was associated with large scale up-regulation of the ethylene pathway but prominent suppression of the JA, auxin and light-regulated pathways. Regulatory genes encoding kinases/phosphatases/F-box proteins and transcription factors formed the major group undergoing differential regulation besides genes for transporters, wall modification, defense and phenylpropanoid pathways. Further comparisons with ethylene-treated petals of R. bourboniana and 8 h ethylene-treated AZ (R. hybrida) identified a core set of 255 genes uniquely regulated by ethylene in R. bourboniana AZ. Almost 23% of these encoded regulatory proteins largely conserved with Arabidopsis AZ components. Most of these were up-regulated while an entire set of photosystem genes was prominently down-regulated. The studies provide important information on regulation of petal abscission in roses.


Assuntos
Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Rosa/genética , Transcriptoma/genética , Regulação para Baixo/genética , Etilenos/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Flores/metabolismo , Ácidos Indolacéticos/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rosa/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima/genética
13.
J Exp Bot ; 60(7): 2035-44, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19346241

RESUMO

Cysteine proteases play an important role in several developmental processes in plants, particularly those related to senescence and cell death. A cysteine protease gene, RbCP1, has been identified that encodes a putative protein of 357 amino acids and is expressed in the abscission zone (AZ) of petals in rose. The gene was responsive to ethylene in petals, petal abscission zones, leaves, and thalamus. The expression of RbCP1 increased during both ethylene-induced as well as natural abscission and was inhibited by 1-MCP. Transcript accumulation of RbCP1 was accompanied by the appearance of a 37 kDa cysteine protease, a concomitant increase in protease activity and a substantial decrease in total protein content in the AZ of petals. Agro-injection of rose petals with a 2.0 kb region upstream of the RbCP1 gene could drive GUS expression in an abscission zone-specific manner and was blocked by 1-MCP. It is concluded that petal abscission is associated with a decrease in total protein content resulting from rapid transcription of RbCP1 and the expression of a 37 kDa protease.


Assuntos
Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Etilenos/metabolismo , Flores/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Rosa/crescimento & desenvolvimento , Ativação Transcricional , Sequência de Aminoácidos , Cisteína Endopeptidases/química , Flores/química , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Rosa/química , Rosa/genética , Rosa/metabolismo , Alinhamento de Sequência
14.
Plant Sci ; 280: 330-339, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30824012

RESUMO

The fragrant rose, Rosa bourboniana, is highly sensitive to ethylene and shows rapid petal abscission (within 16-18 h) while the non-fragrant hybrid rose, R. hybrida, shows delayed abscission (50-52 h) due to reduced ethylene sensitivity. To understand the molecular basis governing these differences, all components of the ethylene pathway (biosynthesis/ receptor/signalling) were studied for expression during abscission. Transcript accumulation of most ethylene biosynthesis genes (ACS/ACO families) increased rapidly in petal abscission zones of R. bourboniana within 4-8 h of ethylene treatment. The expression of most receptor and signalling genes encoding CTRs, EIN2 and EIN3/EIL homologues also followed similar kinetics. Under natural field conditions where abscission takes longer, there was a temporal delay in transcript accumulation of most ethylene pathway genes while some biosynthesis genes (showing reduced ethylene sensitivity) were more strongly up-regulated by abscission cues. In contrast, in R. hybrida where even ethylene-induced abscission is considerably delayed, transcript accumulation of most ethylene biosynthesis and signalling genes was, surprisingly, reduced by ethylene and showed an opposite regulation compared to R. bourboniana. The results suggest that differential and reciprocal regulation of ethylene pathway is one of the major reasons for differences in petal abscission and vase-life between Rosa bourboniana and R. hybrida.


Assuntos
Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Rosa/genética , Transdução de Sinais , Flores/genética , Flores/fisiologia , Plantas Geneticamente Modificadas , Rosa/fisiologia , Ativação Transcricional
15.
Plant Sci ; 288: 110242, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31521226

RESUMO

Abscission is a developmental process that leads to shedding of organs not needed by the plant. Apart from wall hydrolysis, the cells of the abscission zone (AZ) are also believed to undergo programmed cell death (PCD). We show that ethylene-induced petal abscission in Rosa bourboniana is accompanied with the activation of RbPCD1 (PROGRAMMED CELL DEATH LIKE 1) encoding a protein of 78 amino acids. Its expression increases during natural and ethylene-induced petal abscission. Its transcription in most tissues is up-regulated by ethylene. RbPCD1 shows similarity to the N-terminal domain of animal PDCD4 (PROGRAMMED CELL DEATH PROTEIN 4) proteins that are activated during apoptosis and function as transcriptional and translational repressors. RbPCD1 resides in the nucleus and cytoplasm and acts as a transcriptional repressor. Constitutive expression of RbPCD1 in transgenic Arabidopsis is seedling lethal. Heat-induced expression of RbPCD1 under the soybean heat-shock promoter affects leaf function, inflorescence development, silique formation, seed yield and reduces survival. Nuclear localization of RbPCD1 is necessary for manifestation of its effects. RbPCD1 may be necessary to mediate some of the ethylene-induced changes during abscission and senescence in specific tissues.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Receptor de Morte Celular Programada 1/genética , Rosa/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Receptor de Morte Celular Programada 1/química , Receptor de Morte Celular Programada 1/metabolismo , Rosa/crescimento & desenvolvimento , Alinhamento de Sequência , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
16.
Dev Cell ; 46(1): 59-72.e4, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29974864

RESUMO

Plants acquire essential elements from inherently heterogeneous soils, in which phosphate and iron availabilities vary. Consequently, plants have developed adaptive strategies to cope with low iron or phosphate levels, including alternation between root growth enhancement and attenuation. How this adaptive response is achieved remains unclear. Here, we found that low iron accelerates root growth in Arabidopsis thaliana by activating brassinosteroid signaling, whereas low-phosphate-induced high iron accumulation inhibits it. Altered hormone signaling intensity also modulated iron accumulation in the root elongation and differentiation zones, constituting a feedback response between brassinosteroid and iron. Surprisingly, the early effect of low iron levels on root growth depended on the brassinosteroid receptor but was apparently hormone ligand-independent. The brassinosteroid receptor inhibitor BKI1, the transcription factors BES1/BZR1, and the ferroxidase LPR1 operate at the base of this feedback loop. Hence, shared brassinosteroid and iron regulatory components link nutrient status to root morphology, thereby driving the adaptive response.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Brassinosteroides/metabolismo , Ferro/análise , Proteínas Nucleares/metabolismo , Oxirredutases/metabolismo , Fosfatos/análise , Raízes de Plantas/crescimento & desenvolvimento , Adaptação Fisiológica/fisiologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA , Regulação da Expressão Gênica de Plantas/genética , Proteínas Nucleares/genética , Oxirredutases/genética , Raízes de Plantas/metabolismo , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA