Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Microb Ecol ; 86(3): 1455-1486, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36917283

RESUMO

Globally, substantial research into endophytic microbes is being conducted to increase agricultural and environmental sustainability. Endophytic microbes such as bacteria, actinomycetes, and fungi inhabit ubiquitously within the tissues of all plant species without causing any harm or disease. Endophytes form symbiotic relationships with diverse plant species and can regulate numerous host functions, including resistance to abiotic and biotic stresses, growth and development, and stimulating immune systems. Moreover, plant endophytes play a dominant role in nutrient cycling, biodegradation, and bioremediation, and are widely used in many industries. Endophytes have a stronger predisposition for enhancing mineral and metal solubility by cells through the secretion of organic acids with low molecular weight and metal-specific ligands (such as siderophores) that alter soil pH and boost binding activity. Finally, endophytes synthesize various bioactive compounds with high competence that are promising candidates for new drugs, antibiotics, and medicines. Bioprospecting of endophytic novel secondary metabolites has given momentum to sustainable agriculture for combating environmental stresses. Biotechnological interventions with the aid of endophytes played a pivotal role in crop improvement to mitigate biotic and abiotic stress conditions like drought, salinity, xenobiotic compounds, and heavy metals. Identification of putative genes from endophytes conferring resistance and tolerance to crop diseases, apart from those involved in the accumulation and degradation of contaminants, could open new avenues in agricultural research and development. Furthermore, a detailed molecular and biochemical understanding of endophyte entry and colonization strategy in the host would better help in manipulating crop productivity under changing climatic conditions. Therefore, the present review highlights current research trends based on the SCOPUS database, potential biotechnological interventions of endophytic microorganisms in combating environmental stresses influencing crop productivity, future opportunities of endophytes in improving plant stress tolerance, and their contribution to sustainable remediation of hazardous environmental contaminants.


Assuntos
Endófitos , Simbiose , Endófitos/fisiologia , Fungos/fisiologia , Estresse Fisiológico , Plantas/microbiologia , Agricultura
2.
Curr Genomics ; 21(3): 161-167, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33071610

RESUMO

Microorganisms that are capable of live and adapt in hostile habitats of different environmental factors such as extremes temperature, salinity, nutrient availability and pressure are known as extremophiles. Exposure to xenobiotic compounds is global concern influencing the world population as a health hazard. Hence their removal is warranted using biological means that is very sustainable, potentially cost-effective and eco-friendly. Due to adaptation in extreme environments and unique defense mechanisms, they are receiving more attention for the bioremediation of the xenobiotic compounds. They possess robust enzymatic and biocatalytic systems that make them suitable for the effective removal of pollutants from the contaminated environment. Additionally, the extremophiles act as microfactories having specific genetic and biotechnological potential for the production of biomolecules. This mini review will provide an overview of microbial degradation metabolic pathways for bioremediation along with the molecular and physiological properties of diverse extremophiles from variety of habitats. Furthermore, the factors affecting the bioremediation process is also summarized.

3.
J Environ Manage ; 224: 361-375, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30059934

RESUMO

Cyanobacteria, also known as blue green algae are one of the important ubiquitous oxygen evolving photosynthetic prokaryotes and ultimate source of nitrogen for paddy fields since decades. In past two decades, indiscriminated use of pesticides led to biomagnification that intensively harm the structure and soil functions of soil microbes including cyanobacteria. Cyanobacterial abundance biomass, short generation, water holding capacity, mineralizing capacity and more importantly nitrogen fixing have enormous potential to abate the negative effects of pesticides. Therefore, investigation of the ecotoxicological effects of pesticides on the structure and function of the tropical paddy field associated cyanobacteria is urgent and need to estimate the fate of interaction of pesticides over nitrogen fixations and other attributes. In this regard, comprehensive survey over cyanobacterial distribution patterns and their interaction with pesticides in Indian context has been deeply reviewed. In addition, the present paper also deals the molecular docking pattern of pesticides with the nitrogen fixing proteins, which helps in revealing the functional interpretation over nitrogen fixation process.


Assuntos
Cianobactérias , Praguicidas , Simulação de Acoplamento Molecular , Fixação de Nitrogênio , Oryza , Fotossíntese
4.
BMC Microbiol ; 13: 122, 2013 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-23718216

RESUMO

BACKGROUND: The global area under brinjal cultivation is expected to be 1.85 million hectare with total fruit production about 32 million metric tons (MTs). Brinjal cultivars are susceptible to a variety of stresses that significantly limit productivity. The most important biotic stress is caused by the Brinjal fruit and shoot Borer (FSB) forcing farmers to deploy high doses of insecticides; a matter of serious health concern. Therefore, to control the adverse effect of insecticides on the environment including the soil, transgenic technology has emerged as the effective alternative. However, the reports, regarding the nature of interaction of transgenic crops with the native microbial community are inconsistent. The effect of a Bt transgenic brinjal expressing the bio-insecticidal protein (Cry1Ac) on the rhizospheric community of actinomycetes has been assessed and compared with its non-transgenic counterpart. RESULTS: Significant variation in the organic carbon observed between the crops (non-Bt and Bt brinjal) may be due to changes in root exudates quality and composition mediated by genetic attributes of Bt transgenic brinjal. Real time quantitative PCR indicated significant differences in the actinomycetes- specific 16S rRNA gene copy numbers between the non-Bt (5.62-27.86) × 1011 g-1 dws and Bt brinjal planted soil (5.62-24.04) × 1011 g-1 dws. Phylogenetic analysis indicated 14 and 11, actinomycetes related groups in soil with non-Bt and Bt brinjal crop, respectively. Micrococaceaea and Nocardiodaceae were the dominant groups in pre-vegetation, branching, flowering, maturation and post-harvest stage. However, Promicromonosporaceae, Streptosporangiaceae, Mycobacteriaceae, Geodermatophilaceae, Frankiaceae, Kineosporaceae, Actisymmetaceae and Streptomycetaceae were exclusively detected in a few stages in non-Bt brinjal rhizosphere soil while Nakamurellaceae, Corynebactericeae, Thermomonosporaceae and Pseudonocardiaceae in Bt brinjal counterpart. CONCLUSION: Field trails envisage that cultivation of Bt transgenic brinjal had negative effect on organic carbon which might be attributed to genetic modifications in the plant. Changes in the organic carbon also affect the actinomycetes population size and diversity associated with rhizospheric soils of both the crops. Further long-term study is required by taking account the natural cultivar apart from the Bt brinjal and its near-isogenic non-Bt brinjal with particular reference to the effects induced by the Bt transgenic brinjal across different plant growth stages.


Assuntos
Actinobacteria/crescimento & desenvolvimento , Consórcios Microbianos , Rizosfera , Microbiologia do Solo , Solanum melongena/microbiologia , Actinobacteria/classificação , Carbono/química , DNA Bacteriano/genética , Filogenia , Plantas Geneticamente Modificadas/microbiologia , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Solo/química
5.
Microb Ecol ; 66(4): 927-39, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24046073

RESUMO

To elucidate whether the transgenic crop alters the rhizospheric bacterial community structure, a 2-year study was performed with Cry1Ac gene-inserted brinjal crop (Bt) and their near isogenic non-transformed trait (non-Bt). The event of Bt crop (VRBT-8) was screened using an insect bioassay and enzyme-linked immunosorbent assay. Soil moisture, NH4 (+)-N, NO3 (-)-N, and PO4 (-)-P level had non-significant variation. Quantitative polymerase chain reaction revealed that abundance of bacterial 16S rRNA gene copies were lower in soils associated with Bt brinjal. Microbial biomass carbon (MBC) showed slight reduction in Bt brinjal soils. Higher MBC values in the non-Bt crop soil may be attributed to increased root activity and availability of readily metabolizable carbon compounds. The restriction fragment length polymorphism of PCR-amplified rRNA gene fragments detected 13 different bacterial groups with the exclusive presence of ß-Proteobacteria, Chloroflexus, Planctomycetes, and Fusobacteria in non-Bt, and Cyanobacteria and Bacteroidetes in Bt soils, respectively, reflecting minor changes in the community structure. Despite the detection of Cry1Ac protein in the rhizospheric soil, the overall impact of Cry1Ac expressing Bt brinjal was less compared to that due to seasonal changes.


Assuntos
Bactérias/isolamento & purificação , Plantas Geneticamente Modificadas/microbiologia , Rizosfera , Microbiologia do Solo , Solanum melongena/microbiologia , Toxinas de Bacillus thuringiensis , Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodiversidade , Endotoxinas/genética , Endotoxinas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Dados de Sequência Molecular , Filogenia , Plantas Geneticamente Modificadas/genética , Solo/química , Solanum melongena/genética
6.
Sci Total Environ ; 842: 156641, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35700781

RESUMO

Microorganisms are an important component of the ecosystem and have an enormous impact on human lives. Moreover, microorganisms are considered to have desirable effects on other co-existing species in a variety of habitats, such as agriculture and industries. In this way, they also have enormous environmental applications. Hence, collections of microorganisms with specific traits are a crucial step in developing new technologies to harness the microbial potential. Microbial culture collections (MCCs) are a repository for the preservation of a large variety of microbial species distributed throughout the world. In this context, culture collections (CCs) and microbial biological resource centres (mBRCs) are vital for the safeguarding and circulation of biological resources, as well as for the progress of the life sciences. Ex situ conservation of microorganisms tagged with specific traits in the collections is the crucial step in developing new technologies to harness their potential. Type strains are mainly used in taxonomic study, whereas reference strains are used for agricultural, biotechnological, pharmaceutical research and commercial work. Despite the tremendous potential in microbiological research, little effort has been made in the true sense to harness the potential of conserved microorganisms. This review highlights (1) the importance of available global microbial collections for man and (2) the use of these resources in different research and applications in agriculture, biotechnology, and industry. In addition, an extensive literature survey was carried out on preserved microorganisms from different collection centres using the Web of Science (WoS) and SCOPUS. This review also emphasizes knowledge gaps and future perspectives. Finally, this study provides a critical analysis of the current and future roles of microorganisms available in culture collections for different sustainable agricultural and industrial applications. This work highlights target-specific potential microbial strains that have multiple important metabolic and genetic traits for future research and use.


Assuntos
Agricultura , Ecossistema , Biotecnologia , Humanos , Indústrias
7.
Antibiotics (Basel) ; 10(4)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915892

RESUMO

The disposal of municipal solid waste (MSW) directly at landfills or open dump areas, without segregation and treatment, is a significant concern due to its hazardous contents of antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs), and metal resistance genes (MGEs). The released leachate from landfills greatly effects the soil physicochemical, biological, and groundwater properties associated with agricultural activity and human health. The abundance of ARB, ARGs, and MGEs have been reported worldwide, including MSW landfill sites, animal husbandry, wastewater, groundwater, soil, and aerosol. This review elucidates the occurrence and abundance of ARB, ARGs, and MRGs, which are regarded as emerging contaminants (ECs). Recently, ECs have received global attention because of their prevalence in leachate as a substantial threat to environmental and public health, including an economic burden for developing nations. The present review exclusively discusses the demands to develop a novel eco-friendly management strategy to combat these global issues. This review also gives an intrinsic discussion about the insights of different aspects of environmental and public health concerns caused due to massive leachate generation, the abundance of antibiotics resistance (AR), and the effects of released leachate on the various environmental reservoirs and human health. Furthermore, the current review throws light on the source and fate of different ECs of landfill leachate and their possible impact on the nearby environments (groundwater, surface water, and soil) affecting human health. The present review strongly suggests the demand for future research focuses on the advancement of the removal efficiency of contaminants with the improvement of relevant landfill management to reduce the potential effects of disposable waste. We propose the necessity of the identification and monitoring of potential environmental and human health risks associated with landfill leachate contaminants.

9.
Biotechnol Rep (Amst) ; 18: e00256, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29876305

RESUMO

Ulcer is one of the most common diseases affecting throughout the world population. The allopathic treatment of ulcer adversely affects the health by causing harmful side effects. Currently, many herbal plants and secondary metabolites have been used for the ulcer treatment. In the present review, many herbal plants and their parts (root, rhizome, bark, leaves and fruits) have been listed in the table are currently being used for ulcer treatment. These metabolites are responsible for ulcer-neutralization or anti-inflammatory properties. In silico study, plant metabolites showed interaction between protodioscin (secondary metabolites of Asparagus racemosus) and interferon-γ (virulent factor of gastric ulcer) during molecular docking. All the residues of interferon-γ exhibited hydrophobic interactions with plant metabolites. These interactions helps in understanding the plant secondary metabolites vis a vis will open a new door in the research field of new drug discovery and designing for the ulcer treatment.

10.
3 Biotech ; 7(4): 255, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28730550

RESUMO

Tomato is the world's second most cultivated vegetable. During cultivation or post-harvest storage, it is susceptible to more than 200 diseases caused by an array of pathogenic fungi, nematodes, bacteria, and viruses. Although wide range of chemical pesticides are currently available to manage plant diseases, continuous application of pesticides not only affect the nutritional contents of tomato but also the texture or productivity of soil. In this context, plant growth promoting bacteria (PGPB) are one of the nature friendly, safe, and effective alternatives for the management of diseases and pathogens of tomato. Currently, numbers of microbes have been used as soil or plant inoculants in different plants including tomato as biocontrol. Besides disease inhibition, these inoculants also act as growth modulators. The present article describes the biocontrol potential of PGPB strains and mechanisms for the diseases management in tomato.

11.
3 Biotech ; 7(6): 357, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29038774

RESUMO

Curcuma longa L., commonly known as turmeric, is a rhizomatous herb of the family Zingiberaceae. It is mostly used as a spice, a coloring agent and broadly used in traditional medicine such as Ayurveda, Unani, etc., Turmeric rhizomes interact with a large numbers of rhizosphere-associated microbial species, and some enter the plant tissue and act as endophytes. Both rhizospheric and endophytic species are directly or indirectly involved in growth promotion and disease management in plants and also play an important role in the modulation of morphological growth, secondary metabolite production, curcumin content, antioxidant properties, etc. The present review focuses on the rhizobacterial and endophytic bacterial and fungal populations associated with the turmeric.

12.
Protoplasma ; 253(3): 663-681, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26560114

RESUMO

Cry protein expressing insect-resistant trait is mostly deployed to control major devastating pests and minimize reliance on the conventional pesticides. However, the ethical and environmental issues are the major constraints in their acceptance, and consequently, the cultivation of genetically modified (GM) crops has invited intense debate. Since root exudates of Bacillus thuringiensis (Bt) crops harbor the insecticidal protein, there is a growing concern about the release and accumulation of soil-adsorbed Cry proteins and their impact on non-target microorganisms and soil microbial processes. This review pertains to reports from the laboratory studies and field trials to assess the Bt toxin proteins in soil microbes and the processes determining the soil quality in conjunction with the existing hypothesis and molecular approaches to elucidate the risk posed by the GM crops. Ecological perturbations hinder the risk aspect of soil microbiota in response to GM crops. Therefore, extensive research based on in vivo and interpretation of results using high-throughput techniques such as NGS on risk assessment are imperative to evaluate the impact of Bt crops to resolve the controversy related to their commercialization. But more studies are needed on the risk associated with stacked traits. Such studies would strengthen our knowledge about the plant-microbe interactions.


Assuntos
Bacillus thuringiensis/genética , Produtos Agrícolas/genética , Plantas Geneticamente Modificadas , Microbiologia do Solo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Produtos Agrícolas/microbiologia , Proteínas de Insetos , Consórcios Microbianos , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA