Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Org Biomol Chem ; 22(24): 4922-4939, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38808609

RESUMO

A straightforward and efficient methodology has been employed for the synthesis of a diverse set of base-modified fluorescent nucleoside conjugates via Cu(I)-catalysed cycloaddition reaction of 5-ethynyl-2',3',5'-tri-O-acetyluridine/3',5'-di-O-acetyl-2'-deoxyuridine with 4-(azidomethyl)-N9-(4'-aryl)-9,10-dihydro-2H,8H-chromeno[8,7-e][1,3]oxazin-2-ones in tBuOH to afford the desired 1,2,3-triazoles in 92-95% yields. Treatment with NaOMe/MeOH resulted in the final deprotected nucleoside analogues. The synthesized 1,2,3-triazoles demonstrated a significant emission spectrum, featuring two robust bands in the region from 350-500 nm (with excitation at 300 nm) in fluorescence studies. Photophysical investigations revealed a dual-emissive band with high fluorescence intensity, excellent Stokes shift (140-164 nm) and superior quantum yields (0.068-0.350). Furthermore, the electronic structures of the synthesized triazoles have been further verified by DFT studies. Structural characterization of all synthesized compounds was carried out using various analytical techniques, including IR, 1H-NMR, 13C-NMR, 1H-1H COSY, 1H-13C HETCOR experiments, and HRMS measurements. The dual-emissive nature of these nucleosides would be a significant contribution to nucleoside chemistry as there are limited literature reports on the same.

2.
Org Biomol Chem ; 22(16): 3109-3185, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38529599

RESUMO

Iodine-containing molecules, especially hypervalent iodine compounds, have gained significant attention in organic synthesis. They are valuable and sustainable reagents, leading to a remarkable surge in their use for chemical transformations. One such hypervalent iodine compound, phenyliodine bis(trifluoroacetate)/bis(trifluoroacetoxy)iodobenzene, commonly referred to as PIFA, has emerged as a prominent candidate due to its attributes of facile manipulation, moderate reactivity, low toxicity, and ready availability. PIFA presents an auspicious prospect as a substitute for costly organometallic catalysts and environmentally hazardous oxidants containing heavy metals. PIFA exhibits remarkable catalytic activity, facilitating an array of consequential organic reactions, including sulfenylation, alkylarylation, oxidative coupling, cascade reactions, amination, amidation, ring-rearrangement, carboxylation, and numerous others. Over the past decade, the application of PIFA in synthetic chemistry has witnessed substantial growth, necessitating an updated exploration of this field. In this discourse, we present a concise overview of PIFA's applications as a 'green' reagent in the domain of synthetic organic chemistry. A primary objective of this article is to bring to the forefront the scientific community's awareness of the merits associated with adopting PIFA as an environmentally conscientious alternative to heavy metals.

3.
Org Biomol Chem ; 21(47): 9398-9409, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37982163

RESUMO

Globally, human papillomavirus (HPV) infection is the leading cause of mortality associated with cervical cancer, oral cancer (oropharyngeal), and head and neck squamous cell carcinoma (HNSCC). It is essential to explore anti-cancer drugs against life-threatening HPV infections. Aiming to search for potentially better anticancer agents, a small library of ß-C-glycosylated methylidene succinimides have been synthesized under bulk and mechanical grinding conditions using the Wittig olefination reaction. Thus, the reaction of different 2,3,4,6-tetra-O-benzyl-C-glycosyl aldehydes with N-aryl/alkyl maleimides in the presence of PPh3 at 25 °C under bulk and mechanical grinding conditions results in the formation of stereochemically defined (E)-3-(2,3,4,6-tetra-O-benzyl-C-glycosylmethylidene)-N-alkyl/phenyl succinimides, which upon debenzylation with 1 M BCl3 in DCM at -78 °C lead to the synthesis of (E)-3-(C-glycosylmethylidene)-N-alkyl/phenyl succinimides in good to excellent yields. The developed methodology is efficient and environmentally benign because there is no use of organic solvents, and the products are obtained in a stereochemically defined form and in high yields. The aqueous solubility of all synthesized ß-C-glycosylated methylidene succinimides makes them potential candidates for the evaluation of their different biological activities. In the present work, the synthesized glycosylated alkylidine succinimides were subjected to an in-silico molecular docking study against the E6 oncoprotein of high-risk type HPV16, which is responsible for the inactivation of the tumor suppressor p53 protein. Analysis of the molecular docking data revealed that the synthesized compounds are effective inhibitors of HPV infection, which is the cause of oral, head and neck, and cervical cancer. In comparison with the positive control 5-FU, an anti-cancer drug used in chemotherapy, more than fifteen compounds were found to be better E6 protein inhibitors.


Assuntos
Antineoplásicos , Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Proteínas Oncogênicas Virais , Neoplasias do Colo do Útero , Feminino , Humanos , Carcinoma de Células Escamosas/metabolismo , Simulação de Acoplamento Molecular , Solventes , Antineoplásicos/farmacologia
4.
Org Biomol Chem ; 20(45): 8944-8951, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36325908

RESUMO

A sustainable and environment-friendly approach for the regioselective acylation of 1-methyl-3-phenyl quinoxaline-2(1H)-ones has been developed in water. The present protocol requires palladium acetate as a catalyst and exhibits a wide substrate scope by employing commercially available, non-toxic aldehydes, benzyl alcohols and toluenes as acyl surrogates. The mechanistic studies demonstrated the adoption of a free radical pathway for this transformation. Furthermore, the established protocol exhibits excellent regioselectivity and high functional group tolerance and is amenable to the gram scale. The established synthetic method also provides a practical and convenient route for the late-stage functionalization of some potential drug candidates.


Assuntos
Paládio , Água , Estrutura Molecular , Quinoxalinas , Catálise
5.
PLoS Comput Biol ; 16(7): e1007506, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32692741

RESUMO

Although there is increasing importance placed on the use of mathematical models for the effective design and management of long-term parasite elimination, it is becoming clear that transmission models are most useful when they reflect the processes pertaining to local infection dynamics as opposed to generalized dynamics. Such localized models must also be developed even when the data required for characterizing local transmission processes are limited or incomplete, as is often the case for neglected tropical diseases, including the disease system studied in this work, viz. lymphatic filariasis (LF). Here, we draw on progress made in the field of computational knowledge discovery to present a reconstructive simulation framework that addresses these challenges by facilitating the discovery of both data and models concurrently in areas where we have insufficient observational data. Using available data from eight sites from Nigeria and elsewhere, we demonstrate that our data-model discovery system is able to estimate local transmission models and missing pre-control infection information using generalized knowledge of filarial transmission dynamics, monitoring survey data, and details of historical interventions. Forecasts of the impacts of interventions carried out in each site made by the models estimated using the reconstructed baseline data matched temporal infection observations and provided useful information regarding when transmission interruption is likely to have occurred. Assessments of elimination and resurgence probabilities based on the models also suggest a protective effect of vector control against the reemergence of LF transmission after stopping drug treatments. The reconstructive computational framework for model and data discovery developed here highlights how coupling models with available data can generate new knowledge about complex, data-limited systems, and support the effective management of disease programs in the face of critical data gaps.


Assuntos
Erradicação de Doenças/estatística & dados numéricos , Filariose Linfática , Modelos Biológicos , Modelos Estatísticos , Antígenos de Helmintos/sangue , Biologia Computacional , Bases de Dados Factuais , Filariose Linfática/tratamento farmacológico , Filariose Linfática/epidemiologia , Filariose Linfática/parasitologia , Filaricidas/administração & dosagem , Filaricidas/uso terapêutico , Humanos , Ivermectina/administração & dosagem , Ivermectina/uso terapêutico , Nigéria
6.
Org Biomol Chem ; 18(40): 7987-8033, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33000845

RESUMO

From the viewpoint of meeting the current green chemistry challenges in chemical synthesis, there is a need to disseminate how the cocktail of acylation and activation can play a pivotal role in affording bioactive acylated products comprising substituted ketone motifs in fewer reaction steps, with higher atom-economy and improved selectivity. In recent years, a significant number of articles employing the title compounds "aldehydes" as magnificent acylation surrogates which are less toxic and widely applicable have been published. This review sheds light on the compounds use for selective acylation of arene, heteroarene and alkyl (sp3, sp2 and sp) C-H bonds by proficient utilization of the C-H activation strategy. Critical insights into selective acylation of diverse moieties for the synthesis of bioactive compounds are presented in this review that will enable academic and industrial researchers to understand the mechanistic aspects involved and fruitfully employ these strategies in designing novel molecules.

7.
Appl Environ Microbiol ; 84(24)2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30389764

RESUMO

Botulinum neurotoxins (BoNTs), the most poisonous proteins known to humankind, are a family of seven (serotype A to G) immunologically distinct proteins synthesized primarily by different strains of the anaerobic bacterium Clostridium botulinum Being the causative agents of botulism, the toxins block neurotransmitter release by specifically cleaving one of the three soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins, thereby inducing flaccid paralysis. The development of countermeasures and therapeutics against BoNTs is a high-priority research area for public health because of their extreme toxicity and potential for use as biowarfare agents. Extensive research has focused on designing antagonists that block the catalytic activity of BoNTs. In this study, we screened 300 small natural compounds and their analogues extracted from Indian plants for their activity against BoNT serotype A (BoNT/A) as well as its light chain (LCA) using biochemical and cellular assays. One natural compound, a nitrophenyl psoralen (NPP), was identified to be a specific inhibitor of LCA with an in vitro 50% inhibitory concentration (IC50) value of 4.74 ± 0.03 µM. NPP was able to rescue endogenous synaptosome-associated protein 25 (SNAP-25) from cleavage by BoNT/A in human neuroblastoma cells with an IC50 of 12.2 ± 1.7 µM, as well as to prolong the time to the blocking of neutrally elicited twitch tensions in isolated mouse phrenic nerve-hemidiaphragm preparations.IMPORTANCE The long-lasting endopeptidase activity of BoNT is a critical biological activity inside the nerve cell, as it prompts proteolysis of the SNARE proteins, involved in the exocytosis of the neurotransmitter acetylcholine. Thus, the BoNT endopeptidase activity is an appropriate clinical target for designing new small-molecule antidotes against BoNT with the potential to reverse the paralysis syndrome of botulism. In principle, small-molecule inhibitors (SMIs) can gain entry into BoNT-intoxicated cells if they have a suitable octanol-water partition coefficient (log P) value and other favorable characteristics (P. Leeson, Nature 481:455-456, 2012, https://doi.org/10.1038/481455a). Several efforts have been made in the past to develop SMIs, but inhibitors effective under in vitro conditions have not in general been effective in vivo or in cellular models (L. M. Eubanks, M. S. Hixon, W. Jin, S. Hong, et al., Proc Natl Acad Sci U S A 104:2602-2607, 2007, https://doi.org/10.1073/pnas.0611213104). The difference between the in vitro and cellular efficacy presumably results from difficulties experienced by the compounds in crossing the cell membrane, in conjunction with poor bioavailability and high cytotoxicity. The screened nitrophenyl psoralen (NPP) effectively antagonized BoNT/A in both in vitro and ex vivo assays. Importantly, NPP inhibited the BoNT/A light chain but not other general zinc endopeptidases, such as thermolysin, suggesting high selectivity for its target. Small-molecule (nonpeptidic) inhibitors have better oral bioavailability, better stability, and better tissue and cell permeation than antitoxins or peptide inhibitors.


Assuntos
Antídotos/farmacologia , Antídotos/uso terapêutico , Antitoxinas/farmacologia , Antitoxinas/uso terapêutico , Toxinas Bacterianas/antagonistas & inibidores , Animais , Toxinas Botulínicas Tipo A/antagonistas & inibidores , Linhagem Celular Tumoral/efeitos dos fármacos , Clostridium botulinum , Modelos Animais de Doenças , Endopeptidases , Ensaios de Triagem em Larga Escala , Humanos , Índia , Concentração Inibidora 50 , Masculino , Camundongos , Neuroblastoma/tratamento farmacológico , Extratos Vegetais/farmacologia , Proteínas SNARE/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Termolisina
8.
Bioorg Med Chem ; 26(13): 3837-3844, 2018 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-29983285

RESUMO

Malaria, particularly in endemic countries remains a threat to the human health and is the leading the cause of mortality in the tropical and sub-tropical areas. Herein, we explored new C2 symmetric hydroxyethylamine analogs as the potential inhibitors of Plasmodium falciparum (P. falciparum; 3D7) in in-vitro cultures. All the listed compounds were also evaluated against crucial drug targets, plasmepsin II (Plm II) and IV (Plm IV), enzymes found in the digestive vacuole of the P. falciparum. Analog 10f showed inhibitory activities against both the enzymes Plm II and Plm IV (Ki, 1.93 ±â€¯0.29 µM for Plm II; Ki, 1.99 ±â€¯0.05 µM for Plm IV). Among all these analogs, compounds 10g selectively inhibited the activity of Plm IV (Ki, 0.84 ±â€¯0.08 µM). In the in vitro screening assay, the growth inhibition of P. falciparum by both the analogs (IC50, 2.27 ±â€¯0.95 µM for 10f; IC50, 3.11 ±â€¯0.65 µM for 10g) displayed marked killing effect. A significant growth inhibition of the P. falciparum was displayed by analog 12c with IC50 value of 1.35 ±â€¯0.85 µM, however, it did not show inhibitory activity against either Plms. The hemolytic assay suggested that the active compounds selectively inhibit the growth of the parasite. Further, potent analogs (10f and 12c) were evaluated for their cytotoxicity towards mammalian HepG2 and vero cells. The selectivity index (SI) values were noticed greater than 10 for both the analogs that suggested their poor toxicity. The present study indicates these analogs as putative lead structures and could serve as crucial for the development of new drug molecules.


Assuntos
Antimaláricos/síntese química , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Etilaminas/química , Animais , Antimaláricos/metabolismo , Antimaláricos/farmacologia , Ácido Aspártico Endopeptidases/metabolismo , Sítios de Ligação , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Desenho de Fármacos , Etilaminas/metabolismo , Etilaminas/farmacologia , Células Hep G2 , Humanos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Células Vero
9.
J Sci Food Agric ; 98(10): 3784-3794, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29344958

RESUMO

BACKGROUND: Coumarin derivatives possess a wide range of biological activities. By functionalization of the parent coumarin skeleton that has neither antioxidant nor biological activity, a series of new bio-antioxidants has been designed. RESULTS: New antioxidant compositions (equimolar binary and ternary mixtures) of eight 4-methylcoumarins and three related compounds have been tested and different effects between individual components have been observed: synergism (positive effect), additivism (summary effect) and antagonism (negative effect). Higher oxidative stability of the lipid substrate was obtained in the presence of the new antioxidant compositions of the studied compounds with dl-α-tocopherol and l-ascorbic acid. The role of each component in the antioxidant compositions of ternary mixtures has been identified by using new equations composed by the authors. CONCLUSION: All ternary mixtures demonstrate synergism as a result of continuous regeneration of dl-α-tocopherol from the studied antioxidants and l-ascorbic acid. Theoretical calculations have been probed as indicators of the expected effects between the individual components in a binary mixture. © 2018 Society of Chemical Industry.


Assuntos
Antioxidantes/química , Ácido Ascórbico/química , Cumarínicos/química , Substâncias Protetoras/química , alfa-Tocoferol/química , Cinética , Estrutura Molecular
10.
Artigo em Inglês | MEDLINE | ID: mdl-28607028

RESUMO

Despite recent advances in diagnostic and therapeutic methods in antifungal research, aspergillosis still remains a leading cause of morbidity and mortality. One strategy to address this problem is to enhance the activity spectrum of known antifungals, and we now report the first successful application of Candida antarctica lipase (CAL) for the preparation of optically enriched fluconazole analogues. Anti-Aspergillus activity was observed for an optically enriched derivative, (-)-S-2-(2',4'-difluorophenyl)-1-hexyl-amino-3-(1‴,2‴,4‴)triazol-1‴-yl-propan-2-ol, which exhibits MIC values of 15.6 µg/ml and 7.8 µg/disc in broth microdilution and disc diffusion assays, respectively. This compound is tolerated by mammalian erythrocytes and cell lines (A549 and U87) at concentrations of up to 1,000 µg/ml. When incorporated into dextran nanoparticles, the novel, optically enriched fluconazole analogue exhibited improved antifungal activity against Aspergillus fumigatus (MIC, 1.63 µg/ml). These results not only demonstrate the ability of biocatalytic approaches to yield novel, optically enriched fluconazole derivatives but also suggest that enantiomerically pure fluconazole derivatives, and their nanotized counterparts, exhibiting anti-Aspergillus activity may have reduced toxicity.


Assuntos
Antifúngicos/farmacologia , Aspergilose/tratamento farmacológico , Aspergillus fumigatus/efeitos dos fármacos , Fluconazol/análogos & derivados , Fluconazol/farmacologia , Células A549 , Linhagem Celular , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Fluconazol/efeitos adversos , Proteínas Fúngicas/metabolismo , Humanos , Lipase/metabolismo , Nanopartículas/química
11.
BMC Med ; 15(1): 176, 2017 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-28950862

RESUMO

BACKGROUND: There are growing demands for predicting the prospects of achieving the global elimination of neglected tropical diseases as a result of the institution of large-scale nation-wide intervention programs by the WHO-set target year of 2020. Such predictions will be uncertain due to the impacts that spatial heterogeneity and scaling effects will have on parasite transmission processes, which will introduce significant aggregation errors into any attempt aiming to predict the outcomes of interventions at the broader spatial levels relevant to policy making. We describe a modeling platform that addresses this problem of upscaling from local settings to facilitate predictions at regional levels by the discovery and use of locality-specific transmission models, and we illustrate the utility of using this approach to evaluate the prospects for eliminating the vector-borne disease, lymphatic filariasis (LF), in sub-Saharan Africa by the WHO target year of 2020 using currently applied or newly proposed intervention strategies. METHODS AND RESULTS: We show how a computational platform that couples site-specific data discovery with model fitting and calibration can allow both learning of local LF transmission models and simulations of the impact of interventions that take a fuller account of the fine-scale heterogeneous transmission of this parasitic disease within endemic countries. We highlight how such a spatially hierarchical modeling tool that incorporates actual data regarding the roll-out of national drug treatment programs and spatial variability in infection patterns into the modeling process can produce more realistic predictions of timelines to LF elimination at coarse spatial scales, ranging from district to country to continental levels. Our results show that when locally applicable extinction thresholds are used, only three countries are likely to meet the goal of LF elimination by 2020 using currently applied mass drug treatments, and that switching to more intensive drug regimens, increasing the frequency of treatments, or switching to new triple drug regimens will be required if LF elimination is to be accelerated in Africa. The proportion of countries that would meet the goal of eliminating LF by 2020 may, however, reach up to 24/36 if the WHO 1% microfilaremia prevalence threshold is used and sequential mass drug deliveries are applied in countries. CONCLUSIONS: We have developed and applied a data-driven spatially hierarchical computational platform that uses the discovery of locally applicable transmission models in order to predict the prospects for eliminating the macroparasitic disease, LF, at the coarser country level in sub-Saharan Africa. We show that fine-scale spatial heterogeneity in local parasite transmission and extinction dynamics, as well as the exact nature of intervention roll-outs in countries, will impact the timelines to achieving national LF elimination on this continent.


Assuntos
Filariose Linfática/prevenção & controle , África Subsaariana/epidemiologia , Filariose Linfática/epidemiologia , História do Século XXI , Humanos , Prevalência
12.
Chem Soc Rev ; 45(24): 6855-6887, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-27785498

RESUMO

Enzymes, being remarkable catalysts, are capable of accepting a wide range of complex molecules as substrates and catalyze a variety of reactions with a high degree of chemo-, stereo- and regioselectivity in most of the reactions. Biocatalysis can be used in both simple and complex chemical transformations without the need for tedious protection and deprotection chemistry that is very common in traditional organic synthesis. This current review highlights the applicability of one class of biocatalysts viz."lipases" in synthetic transformations, the resolution of pharmaceutically important small molecules including polyphenols, amides, nucleosides and their precursors, the development of macromolecular systems (and their applications as drug/gene carriers), flame retardants, polymeric antioxidants and nanocrystalline solar cells, etc.


Assuntos
Biocatálise , Lipase/química , Substâncias Macromoleculares/síntese química , Amidas/síntese química , Antioxidantes/síntese química , Portadores de Fármacos/síntese química , Retardadores de Chama/síntese química , Humanos , Nanoestruturas/química , Nucleosídeos/síntese química , Polifenóis/síntese química , Energia Solar
13.
BMC Med ; 14: 14, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26822124

RESUMO

BACKGROUND: The current WHO-led initiative to eradicate the macroparasitic disease, lymphatic filariasis (LF), based on single-dose annual mass drug administration (MDA) represents one of the largest health programs devised to reduce the burden of tropical diseases. However, despite the advances made in instituting large-scale MDA programs in affected countries, a challenge to meeting the goal of global eradication is the heterogeneous transmission of LF across endemic regions, and the impact that such complexity may have on the effort required to interrupt transmission in all socioecological settings. METHODS: Here, we apply a Bayesian computer simulation procedure to fit transmission models of LF to field data assembled from 18 sites across the major LF endemic regions of Africa, Asia and Papua New Guinea, reflecting different ecological and vector characteristics, to investigate the impacts and implications of transmission heterogeneity and complexity on filarial infection dynamics, system robustness and control. RESULTS: We find firstly that LF elimination thresholds varied significantly between the 18 study communities owing to site variations in transmission and initial ecological parameters. We highlight how this variation in thresholds lead to the need for applying variable durations of interventions across endemic communities for achieving LF elimination; however, a major new result is the finding that filarial population responses to interventions ultimately reflect outcomes of interplays between dynamics and the biological architectures and processes that generate robustness/fragility trade-offs in parasite transmission. Intervention simulations carried out in this study further show how understanding these factors is also key to the design of options that would effectively eliminate LF from all settings. In this regard, we find how including vector control into MDA programs may not only offer a countermeasure that will reliably increase system fragility globally across all settings and hence provide a control option robust to differential locality-specific transmission dynamics, but by simultaneously reducing transmission regime variability also permit more reliable macroscopic predictions of intervention effects. CONCLUSIONS: Our results imply that a new approach, combining adaptive modelling of parasite transmission with the use of biological robustness as a design principle, is required if we are to both enhance understanding of complex parasitic infections and delineate options to facilitate their elimination effectively.


Assuntos
Erradicação de Doenças/estatística & dados numéricos , Filariose Linfática/prevenção & controle , Modelos Estatísticos , Doenças Negligenciadas/prevenção & controle , África/epidemiologia , Ásia/epidemiologia , Teorema de Bayes , Simulação por Computador , Transmissão de Doença Infecciosa/prevenção & controle , Filariose Linfática/epidemiologia , Humanos , Doenças Negligenciadas/epidemiologia , Papua Nova Guiné/epidemiologia
14.
Chemistry ; 22(2): 481-5, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26584957

RESUMO

A microwave-assisted highly efficient intermolecular domino carbopalladation/C-H functionalization sequence has been developed to access bis-heteroaryl frameworks in a single operation. The reaction involves carbopalladation of the halogenated acrylamides or phenylpropiolamides by the Pd(0) catalysis, followed by the direct (hetero)arylation to give products with good to excellent yields. The synthetic utility of this method was also extended towards the application of the Ugi-adduct as the starting material.

15.
J Enzyme Inhib Med Chem ; 31(6): 1520-6, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27146339

RESUMO

New isatin-triazole based hybrids have been synthesized and evaluated for their inhibitory activity of TNF-α induced expression of Intercellular Adhesion Molecule-1 (ICAM-1) on the surface of human endothelial cells. Structure-activity relationship (SAR) studies revealed that the presence of the electron-attracting bromo substituent at position-5 of the isatin moiety played an important role in enhancing the anti-inflammatory potential of the synthesized compounds. Z-1-[3-(1H-1,2,4-Triazol-1-yl)propyl]-5-bromo-3-[2-(4-methoxyphenyl)hydrazono]indolin-2-one (19) with an IC50 = 20 µM and 89% ICAM-1 inhibition with MTD at 200 µM was found to be the most potent of all the synthesized derivatives. Introduction of 1,2,4-triazole ring and electron-donating methoxy group on the phenylhydrazone moiety resulted in four-fold increase of the anti-inflammatory activity.


Assuntos
Anti-Inflamatórios/síntese química , Anti-Inflamatórios/farmacologia , Isatina/farmacologia , Triazóis/química , Anti-Inflamatórios/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Humanos , Espectroscopia de Prótons por Ressonância Magnética , Espectrofotometria Infravermelho , Relação Estrutura-Atividade
16.
Chaos ; 26(9): 093115, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27781468

RESUMO

We study changes in the bifurcations of seasonally driven compartmental epidemic models, where the transmission rate is modulated temporally. In the presence of periodic modulation of the transmission rate, the dynamics varies from periodic to chaotic. The route to chaos is typically through period doubling bifurcation. There are coexisting attractors for some sets of parameters. However in the presence of quasiperiodic modulation, tori are created in place of periodic orbits and chaos appears via finite torus doublings. Strange nonchaotic attractors (SNAs) are created at the boundary of chaotic and torus dynamics. Multistability is found to be reduced as a function of quasiperiodic modulation strength. It is argued that occurrence of SNAs gives an opportunity of asymptotic predictability of epidemic growth even when the underlying dynamics is strange.


Assuntos
Epidemias , Modelos Biológicos , Periodicidade , Simulação por Computador , Suscetibilidade a Doenças , Humanos , Dinâmica não Linear , Fatores de Tempo
17.
Molecules ; 21(11)2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27834873

RESUMO

Highly regioselective acylation has been observed in 7,8-dihydroxy-4-methylcoumarin (DHMC) by the lipase from Rhizopus oryzae suspended in tetrahydrofuran (THF) at 45 °C using six different acid anhydrides as acylating agents. The acylation occurred regioselectively at one of the two hydroxy groups of the coumarin moiety resulting in the formation of 8-acyloxy-7-hydroxy-4-methylcoumarins, which are important bioactive molecules for studying biotansformations in animals, and are otherwise very difficult to obtain by only chemical steps. Six monoacylated, monohydroxy 4-methylcoumarins have been biocatalytically synthesised and identified on the basis of their spectral data and X-ray crystal analysis.


Assuntos
Cumarínicos/química , Cumarínicos/síntese química , Proteínas Fúngicas/química , Lipase/química , Rhizopus/enzimologia , Cristalografia por Raios X , Ésteres/síntese química , Ésteres/química , Estrutura Molecular
18.
Bioorg Med Chem ; 23(8): 1817-27, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25766631

RESUMO

Phthalimides functionalized with cyclic amines were synthesized, characterized and screened for their in vitro antimalarial efficacy against Plasmodium falciparum (Pf3D7). Of all the listed phthalimides evaluated, 14 and 24 were identified as potent antimalarial agents as advocated by assessment of their ability to inhibit [(3)H] hypoxanthine incorporation in the nucleic acid of parasites. In addition, phthalimides 14 and 24 were incubated for 60 and 90h and an enhanced antimalarial effect was noticed with increase in time to great extent. A reduction in IC50 values was observed with increase in exposure time of the parasite to the compounds. A symmetric phthalimide, 24 possessing piperazine as linker unit was identified as the most potent antimalarial agent with IC50 values of 5.97±0.78, 2.0±1.09 and 1.1±0.75µM on incubation period of 42, 60 and 90h, respectively. The abnormal morphologies such as delay in developmental stages, growth arrest and condensed nuclei of parasite were observed with the aid of microscopic studies upon exposure with 14 and 24. The evaluation of 14 and 24 against chloroquine resistant strain, (Pf7GB) of P. falciparum afforded IC50 values, 13.29±1.20 and 7.21±0.98µM, respectively. The combination of 24 with artemisinin (ART) showed enhanced killing of parasite against Pf3D7. Further, all phthalimides were evaluated for their activity against falcipain-2 (FP2), a major hemoglobinase of malarial parasite. The enzymatic assay afforded 6 as most active member against FP2. To the best of our knowledge this is the initial study represents phthalimide protected amino acids functionalized with cyclic amines as potent antimalarial agents.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Cisteína Endopeptidases/metabolismo , Ftalimidas/química , Ftalimidas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/síntese química , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/microbiologia , Simulação de Acoplamento Molecular , Ftalimidas/síntese química , Piperazinas/síntese química , Piperazinas/química , Piperazinas/farmacologia , Plasmodium falciparum/metabolismo
19.
Top Curr Chem (Cham) ; 382(1): 4, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296918

RESUMO

Pyrimidine is a pharmacologically important moiety that exhibits diverse biological activities. This review reflects the growing significance of transition metal-catalyzed reactions for the synthesis of pyrimidines (with no discussion being made on the transition metal-catalyzed functionalization of pyrimidines). The effect of different catalysts on the selectivity/yields of pyrimidines and catalyst recyclability (wherever applicable) are described, together with attempts to illustrate the role of the catalyst through mechanisms. Although several methods have been researched for synthesizing this privileged scaffold, there has been a considerable push to expand transition metal-catalyzed, sustainable, efficient and selective synthetic strategies leading to pyrimidines. The aim of the authors with this update (2017-2023) is to drive the designing of new transition metal-mediated protocols for pyrimidine synthesis.


Assuntos
Elementos de Transição , Pirimidinas , Catálise
20.
Carbohydr Res ; 539: 109105, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583285

RESUMO

Herein, we report the development of a diastereoselective and efficient route to construct sugar-derived pyrano[3,2-c]quinolones utilizing 1-C-formyl glycal and 4-hydroxy quinolone annulation. This methodology will open a route to synthesize nature inspired pyrano[3,2-c]quinolones. This is the first report for the stereoselective synthesis of sugar-derived pyrano[3,2-c]quinolones, where 100% stereoselectivity was observed. A total of sixteen compounds have been synthesized in excellent yields with 100% stereoselectivity. The molecular docking of the synthesized novel natural product analogues demonstrated their binding modes within the active site of type II topoisomerase. The results of the in-silico studies displayed more negative binding energies for the all the synthesized compounds in comparison to the natural product huajiosimuline A, indicating their affinity for the active pocket. Ten out of the sixteen novel synthesized compounds were found to have comparative or relatively more negative binding energy in comparison to the standard anti-cancer drug, doxorubicin. Additionally, the scalability and viability of this protocol was illustrated by the gram scale synthesis.


Assuntos
Produtos Biológicos , Simulação de Acoplamento Molecular , Quinolonas , Produtos Biológicos/química , Produtos Biológicos/síntese química , Estereoisomerismo , Quinolonas/química , Quinolonas/síntese química , DNA Topoisomerases Tipo II/metabolismo , DNA Topoisomerases Tipo II/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA