Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Pharm ; 20(6): 2927-2941, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37194684

RESUMO

The unique physiology of tumors limits the efficacy of chemotherapeutics. In efforts to improve the effectiveness of the existing chemotherapy drugs, nanomedicine emerged as a new hope but proved inadequate due to the transport barriers present within the tumor tissues, which limits the potential of nanomedicine. Dense collagen networks in fibrotic tissues contribute to hindering the penetration of molecular- or nano-scale medicine through tumor interstitium. In the present study, human serum albumin (HSA)-based nanoparticles (NPs) were developed for gemcitabine (GEM) and losartan (LST), which could offer secreted protein acids rich in cysteine (SPARC) and enhanced permeability and retention effect (EPR)-mediated drug accumulation in tumors. Also, the tumor microenvironment (TME) modulation approach using LST was coupled to investigate the impact on antitumor efficacy. GEM-HSA NPs and LST-HSA NPs were prepared by the desolvation-cross-linking method and characterized for size, potential, morphology, drug loading, drug-polymer interactions, and hemocompatibility. For investigating the efficacy of prepared NPs, cytotoxicity and mechanisms of cell death were elucidated in vitro by using various assays. Intracellular uptake studies of prepared HSA NPs indicated their uptake and cytoplasmic localization. Furthermore, in vivo studies demonstrated significantly improved anticancer efficacy of GEM-HSA NPs in combination with LST pretreatment. Extended LST treatment further improved the anticancer potential. It was shown that the improved efficacy of the nanomedicine was correlated with the reduced thrombospondin-1 (TSP-1) and collagen level in tumor tissue upon LST pretreatment. Moreover, this approach exhibited augmented nanomedicine accumulation in the tumor, and hematological, biochemical, and tissue histology indicated the safety profile of this combination regimen. Concisely, the undertaken study demonstrated the potential of the triple targeting (SPARC, EPR, TME modulation) approach for augmented efficacy of chemotherapeutics.


Assuntos
Nanomedicina , Nanopartículas , Humanos , Nanomedicina/métodos , Microambiente Tumoral , Linhagem Celular Tumoral , Gencitabina , Albumina Sérica Humana , Nanopartículas/química
2.
Mol Divers ; 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468705

RESUMO

Natural products (NPs) continue to serve as a structural model for the development of new bioactive molecules and improve the process of identifying novel medicines. The biological effects of coumarins, one of the most researched compounds among NPs, are currently being thoroughly investigated. In the present investigation, we reported the synthesis of nineteen semi-synthetic 3-substituted scoparone analogues, followed by their characterization using analytical methods such as NMR, HPLC, and HRMS. All compounds screened for in vitro and in vivo study for their ability to reduce inflammation. The SAR study worked effectively for this particular scoparone 3-substitution, as compounds 3, 4, 9, 16, 18, and 20 displayed improved in vitro results for TNF-α than the parent molecule. Similarly, compounds 3, and 17 showed a higher percentage of IL-6 inhibition. Compounds 3, 4, and 12 have also been identified by in vivo studies as promising candidates with higher percent inhibition than the parent scoparone molecule. As evident from all in vitro and in vivo studies, compound 3 showed the most potent anti-inflammatory activity among all.

3.
Drug Chem Toxicol ; 46(3): 597-608, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35509154

RESUMO

Diclofenac is a widely prescribed anti-inflammatory drug having cardiovascular complications as one of the main liabilities that restrict its therapeutic use. We aimed to investigate for any role of rutin against diclofenac-induced cardiac injury with underlying mechanisms as there is no such precedent to date. The effect of rutin (10 and 20 mg/kg) was evaluated upon concomitant oral administration for fifteen days with diclofenac (10 mg/kg). Rutin significantly attenuated diclofenac-induced alterations in the serum cardiac markers (LDH, CK-MB, and SGOT), serum cytokine levels (TNF-α and IL-6), and oxidative stress markers (MDA and GSH) in the cardiac tissue. Histopathological examination and Scanning Electron Microscopy (SEM) findings displayed a marked effect of rutin to prevent diclofenac-mediated cardiac injury. Altered protein expression of myocardial injury markers (cTnT, FABP3, and ANP) and apoptotic markers (Bcl-2 and Caspase-3) in the cardiac tissue upon diclofenac treatment was considerably shielded by rutin treatment. MYL3 was unaffected due to diclofenac or rutin treatment. Rutin also significantly improved diclofenac-induced gastrointestinal and hepatic alterations based on the observed ameliorative effects in key mediators, oxidative stress markers, histopathology examination, and SEM findings. Overall results suggest that rutin can protect the diclofenac-induced cardiac injury by lowering oxidative stress, inhibiting inflammation, and reducing apoptosis. Further research work directs toward the development of phytotherapeutics for cardioprotection.


Assuntos
Anti-Inflamatórios não Esteroides , Antioxidantes , Diclofenaco , Inflamação , Rutina , Animais , Ratos , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/toxicidade , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Apoptose/efeitos dos fármacos , Diclofenaco/farmacologia , Diclofenaco/toxicidade , Proteína 3 Ligante de Ácido Graxo/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , Cadeias Leves de Miosina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Rutina/metabolismo , Rutina/farmacologia , Rutina/uso terapêutico
4.
Drug Chem Toxicol ; 45(5): 2352-2360, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34233566

RESUMO

CYP2E1 plays a crucial role in the bio-activation of toxic substances leading to liver damage. In this context, CYP2E1 converts paracetamol (PCM) to N-acetyl-p-benzoquinone imine (NAPQI), which is prone to cause hepatotoxicity. Hence, we aimed to explore the protective effect of glabridin on widely used PCM-induced liver injury model in the present study and, after that, correlated with the role of CYP2E1 toward its efficacy. Glabridin was isolated from Glycyrrhiza glabra and characterized before the investigation in an in-vivo mice model of PCM-induced liver injury. Glabridin after oral treatment at 5-20 mg/kg showed a considerable improvement in serum biochemical parameters (ALT and AST) and oxidative stress markers (MDA, GSH, SOD, and catalase) in comparison to only PCM-treatment. Histopathological examination of the liver depicted that glabridin exhibited substantial protection from PCM-induced liver injury compared to the disease control group. Significant down-regulation of CYP2E1 protein and its mRNA expression levels were observed in the glabridin-treated groups compared to PCM-induced respective elevation of CYP2E1. Moreover, activation of NF-κB was significantly inhibited by glabridin. Therefore, glabridin has the potential to protect PCM-induced liver injury through CYP2E1 inhibition-mediated normalization of oxidative stress. Further research is warranted to establish glabridin as a phytotherapeutics for liver protection for which no effective and safe oral drug is available to date.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Acetaminofen/toxicidade , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Isoflavonas , Fígado , Camundongos , Estresse Oxidativo , Fenóis
5.
Cytokine ; 148: 155688, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34455232

RESUMO

Arthritis, a primary autoimmune disorder having a global incidence of 2.03% person/year, is presently being treated by many commercially available drugs that treat symptomatically or improve the disease's clinical state; however, all the therapies pose varying amount of side effects. Therefore, it has become a fundamental need to search for therapeutics that offer better efficacy and safety profile, and the natural or nature-derived products are known for their outstanding performance in this arena. OA-DHZ, known to possess anti-inflammatory and analgesic properties, when explored for its efficacy against arthritis in adjuvant-induced arthritis (AIA) model, was found to inhibit paw edema by 34% and TNF-α, IL-6, and IL-1ß by 67%, 39%, and 45% respectively when compared to diseased control. It was also able to reduce the inflamed spleen size by 45% and successfully normalized biochemical and hematological changes that followed arthritis. In vitro studies revealed that the underlying mechanism for inhibiting arthritis progression might be due to NF-κB /MAPK pathway modulation. OA-DHZ also showed selective inhibition of COX-2 in vitro while showing gastroprotective effects when evaluated for ulcerogenic and antiulcer potential in vivo. In contrast to the results obtained from in vivo experimentation, there is a disparity in the pharmacokinetic profile of OA-DHZ, where it showed low oral exposure and high clearance rate. OA-DHZ being antiarthritic acting via NF-κB /MAPK/ COX inhibition while showing gastroprotective effects, can be a suitable candidate to be in the drug pipeline and further exploration.


Assuntos
Artrite/tratamento farmacológico , Inibidores de Ciclo-Oxigenase/uso terapêutico , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Substâncias Protetoras/uso terapêutico , Estômago/patologia , Estirenos/uso terapêutico , Administração Oral , Animais , Artrite/sangue , Artrite/patologia , Inibidores de Ciclo-Oxigenase/farmacologia , Citocinas/metabolismo , Ativação Enzimática/efeitos dos fármacos , Feminino , Inflamação/complicações , Inflamação/tratamento farmacológico , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos , Substâncias Protetoras/farmacologia , Transporte Proteico/efeitos dos fármacos , Células RAW 264.7 , Ratos Wistar , Baço/efeitos dos fármacos , Baço/patologia , Úlcera Gástrica/complicações , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/patologia , Estirenos/administração & dosagem , Estirenos/farmacocinética , Estirenos/farmacologia , Redução de Peso/efeitos dos fármacos
6.
Toxicol Appl Pharmacol ; 423: 115582, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34019860

RESUMO

NLRP3 inflammasome is involved in several chronic inflammatory diseases. The inflammatory effect of the NLRP3 inflammasome is executed through IL-1ß and IL-18. Therefore, IL-1ß is one of the primary targets in chronic inflammatory conditions. However, current treatment regimens are dependent on anti- IL-1ß biologicals. The therapies targeting IL-1ß through inhibition of NLRP3 inflammasome are thus being actively explored. We identified safranal, a small molecule responsible for the essence of saffron as a potential inhibitor of the NLRP3 inflammasome. Safranal significantly suppressed the release of IL-1ß from ATP stimulated J774A.1 and bone marrow-derived macrophages (BMDMs) by regulating CASP1 and CASP8 dependent cleavage of pro-IL-1ß. Safranal markedly suppressed the expression of NLRP3 and its ATPase activity. Safranal treatment enhanced the expression of NRF2, whereas, si-RNA mediated silencing of Nrf2 abrogated the anti-NLRP3 effect of safranal. Furthermore, safranal inhibited ASC oligomerization and formation of ASC specks. Safranal also displayed anti-NLRP3 activity in multiple mice models. Treatment of animals with safranal reduced the production of IL-1ß in ATP elicited peritoneal inflammation, MSU induced air pouch inflammation, and MSU injected foot paw edema in mice. Thus, our data projects safranal as a potential preclinical drug candidate against NLRP3 inflammasome triggered chronic inflammation.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/antagonistas & inibidores , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Cicloexenos/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Terpenos/farmacologia , Animais , Linhagem Celular , Células Cultivadas , Cicloexenos/uso terapêutico , Relação Dose-Resposta a Droga , Feminino , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Terpenos/uso terapêutico
7.
Xenobiotica ; 51(6): 625-635, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33539218

RESUMO

CYP2E1 is directly or indirectly involved in the metabolism of ethanol and endogenous fatty acids but it plays a major role in the bio-activation of toxic substances that produce reactive metabolites leading to hepatotoxicity. Therefore, identification of CYP2E1 inhibitor from bioflavonoids class having useful pharmacological properties has dual benefit regarding avoidance of severe food-drug/nutraceutical-drug interaction and scope to develop a phytotherapeutics through an intended pharmacokinetic interaction.In the present study, we aimed to identify CYP2E1 inhibitor from experimental bioflavonoids which are unexplored for CYP2E1 inhibition till date using in-silico, in-vitro and in-vivo approaches.Results of in-vitro CYP2E1 inhibitory studies using CYP2E1-mediated chlorzoxazone 6-hydroxylation in human liver microsomes showed that glabridin have the highest potential than fisetin, epicatechin, nobiletin, and chrysin to inhibit CYP2E1 enzyme. Mechanistic investigations indicate that glabridin is a competitive CYP2E1 inhibitor. Molecular docking study results demonstrate that glabridin strongly interacted with the active site of human CYP2E1 enzyme. Pharmacokinetics of a CYP2E1 substrate in mice model indicates a significant alteration of chlorzoxazone and 6-hydroxychlorzoxazone plasma levels in the presence of glabridin. Further studies are needed to confirm the results at clinical level.Overall, glabridin is found to be a potential CYP2E1 inhibitor.


Assuntos
Citocromo P-450 CYP2E1 , Isoflavonas , Clorzoxazona , Isoflavonas/farmacologia , Microssomos Hepáticos , Simulação de Acoplamento Molecular , Fenóis
8.
Xenobiotica ; 50(11): 1332-1340, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32432967

RESUMO

Diclofenac is an extensively used nonsteroidal anti-inflammatory drug, but gastrointestinal liabilities and cardiovascular complications take the shine away from such a widely prescribed drug. On the other hand, rutin, a dietary bioflavonoid, has quite a few pharmacological attributes to improve the efficacy and reduce the dose-related toxicities of diclofenac through the intended food-drug/herb-drug interaction. The aim of the present research work was to investigate the role of rutin on pharmacokinetic modulation and the consequent efficacy of diclofenac. At first, pharmacodynamics and pharmacokinetics of diclofenac as alone and in the presence of rutin were investigated orally in a rat model. Then, mechanistic studies were performed to explain the effect of rutin on improvement in oral exposure as well as the efficacy of diclofenac using a battery of in-vitro/in-situ/in-vivo studies. Results displayed that rutin enhanced efficacy as well as oral bioavailability of diclofenac in rats. A marked increase in permeability of diclofenac by rutin was displayed that is linked to inhibition of Breast Cancer Resistance Protein (BCRP) transporters. There was no significant effect of rutin on the modulation of intestinal transit, CYP2C9 inhibition in human liver microsomes, and CYP2C9/CYP2C11 expression in rat liver tissues to boost the oral exposure of diclofenac. Rutin is found to be an inhibitor for BCRP transporters and can act as an oral bioavailability enhancer for a drug like diclofenac.


Assuntos
Anti-Inflamatórios não Esteroides/farmacocinética , Diclofenaco/farmacocinética , Rutina/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Animais , Interações Medicamentosas , Ratos
9.
Bioorg Med Chem Lett ; 29(8): 1007-1011, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30777609

RESUMO

An improved route for the synthesis of N,N'-diindolyl methane (DIM) glycosides has been developed by using Fe/Al pillared clay catalyst. In-silico pharmacokinetics followed by in-vitro studies like aqueous solubility, lipophilicity, P-glycoprotein (P-gp) dependent ATPase activity, permeability, plasma protein binding, RBC partitioning, metabolic stability in different liver microsomes and its in-vitro-in-vivo extrapolation were conducted for the most potent derivative namely NGD16. The compound was found to have low solubility, optimum lipophilicity, no P-gp inhibitory activity, intermediate permeability, high plasma protein binding, low RBC partitioning, acceptable metabolic stability in rat liver microsomes (RLM) as well as human liver microsomes (HLM) with intermediate hepatic extraction ratio.


Assuntos
Glucosídeos/síntese química , Indóis/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Glucosídeos/metabolismo , Glucosídeos/farmacocinética , Meia-Vida , Humanos , Microssomos Hepáticos/metabolismo , Ligação Proteica , Ratos , Solubilidade
10.
Bioorg Chem ; 89: 103022, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31181491

RESUMO

Our previous discovery of series of pyrazolopyrimidinone based PDE5 inhibitors led to find potent leads but with low aqueous solubility and poor bioavailability, and low selectivity. Now, a new series of same pyrazolopyrimidinone scaffold is designed, synthesized and evaluated for its PDE5 inhibitory potential. In this study, some of the molecules are found more potent and selective PDE5 inhibitors in vitro than sildenafil. The studies revealed that compound 5 is 20 fold selective to PDE5 against PDE6. As PDE6 enzyme is involved in the phototransduction pathway in the retina and creates distortion problem, the selectivity for PDE5 specifically against PDE6 enzyme is preferred for any development candidate and in present study, compound 5 has been found to be devoid of this liability of selectivity issue. Moreover, compound 5 has shown excellent in vivo efficacy in conscious rabbit model, it's almost comparable to sildenafil. The preclinical pharmacology including pharmacokinetic and physicochemical parameter studies were also performed for compound 5, it was found to have good PK properties and other physicochemical parameters. The development of these selective PDE5 inhibitors can further lead to draw strategies for the novel preclinical and/or clinical candidates based on pyrazolopyrimidinone scaffold.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Desenho de Fármacos , Inibidores da Fosfodiesterase 5/farmacologia , Pirazóis/farmacologia , Pirimidinonas/farmacologia , Animais , Relação Dose-Resposta a Droga , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Ereção Peniana/efeitos dos fármacos , Pênis/efeitos dos fármacos , Pênis/patologia , Inibidores da Fosfodiesterase 5/administração & dosagem , Inibidores da Fosfodiesterase 5/síntese química , Pirazóis/administração & dosagem , Pirazóis/síntese química , Pirimidinonas/administração & dosagem , Pirimidinonas/síntese química , Coelhos , Relação Estrutura-Atividade
11.
Drug Dev Res ; 80(7): 948-957, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31318064

RESUMO

Diclofenac is one of the world's largest selling nonsteroidal anti-inflammatory drugs. The major concerns related to oral diclofenac therapy are gastrointestinal and cardiovascular side effects for which explicitly emphasis has been given to use it at lowest effective dose for the shortest duration. On the other hand, IS01957 has been designed under the purview of anti-inflammatory drug and bioavailability enhancer. IS01957 have dual action on inflammation and nociception with acceptable safety profile. In the quest for a suitable combination with improved therapeutic efficacy and better tolerability, pharmacodynamic and pharmacokinetic interaction studies were performed for diclofenac with or without IS01957 in mice model. Results showed that IS01957 enhanced both anti-inflammatory effect and plasma concentration of diclofenac upon concomitant oral administration. These interesting results steered to enumerate the possible role of IS01957 towards diclofenac pharmacokinetics through a panel of mechanistic investigations: (a) BCRP dependent ATPase activity was markedly interfered by IS01957; (b) IS01957 increased the intestinal permeability of diclofenac in the single pass in-situ perfusion model; (c) IS01957 inhibited the CYP2C9 catalyzed diclofenac 4-hydroxylation in human liver microsomes. Immunoblotting results suggest that diclofenac action was improved significantly in the presence of IS01957 involving MAPK pathways. Finally acute gastric damage study showed that IS01957 in combination with diclofenac was better to improve the desired PGE2 level as compare to alone. In nutshell, IS01957 have potential to augment the efficacy of diclofenac through pharmacokinetic modulation. Further investigations are required for dose reduction of diclofenac to combat its liabilities before going into clinical setting.


Assuntos
Anti-Inflamatórios não Esteroides/farmacocinética , Diclofenaco/farmacocinética , Morfolinas/farmacologia , Propionatos/farmacologia , Adenosina Trifosfatases/antagonistas & inibidores , Administração Oral , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Citocromo P-450 CYP2C9/metabolismo , Diclofenaco/administração & dosagem , Dinoprostona/metabolismo , Interações Medicamentosas , Sinergismo Farmacológico , Feminino , Mucosa Gástrica/metabolismo , Hidroxilação/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Microssomos Hepáticos/metabolismo , Morfolinas/administração & dosagem , Permeabilidade/efeitos dos fármacos , Ratos
12.
Cytokine ; 111: 84-87, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30125779

RESUMO

Deposition of amyloid-ß in Alzheimer's disease is accompanied by chronic inflammation, which involves raised levels of pro-inflammatory cytokines TNF-α, IL-6 and IL-1ß. However, the role of Aß1-42 in the inflammatory process, before it gets deposited into aggregates has not been investigated thoroughly. Through this study, we are illustrating the dual role of soluble Aß1-42 (sAß1-42) in activating the NLRP3 inflammasome and simultaneously inhibiting TNF-α secretion. Our data suggested that the treatment of chronically induced THP-1 macrophages and N9 microglial cells with sAß1-42 can suppress the major inflammatory cytokine TNF-α without affecting the level of IL-6. However, the activation of NLRP3 inflammasome was well evidenced by secretion of IL-1ß, increased expression of NLRP3 and caspase-1, implicating sAß1-42 in enhancing and suppressing one or other type of inflammation. Further investigation revealed that sAß1-42 was able to severely abrogate the expression of NF-κB, p50 and restricting the translocation of NF-κB, p65 to nucleus by inhibiting phosphorylation of IκB-α in THP-1 macrophages. These data indicate that the sAß1-42 may play a dual role during inflammatory process, wherein, it may be involved in protecting the cells from inflammatory damage due to TNF-α. This ability of sAß1-42 might be playing some role in protecting the brain cells during the process of aging and Alzheimer's disease, where, chronic inflammatory environment plays a vital role.


Assuntos
Doença de Alzheimer/imunologia , Peptídeos beta-Amiloides/imunologia , Inflamassomos/imunologia , Macrófagos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Fragmentos de Peptídeos/imunologia , Fator de Necrose Tumoral alfa/imunologia , Doença de Alzheimer/patologia , Humanos , Interleucina-1beta/imunologia , Interleucina-6/imunologia , Macrófagos/patologia , Microglia/imunologia , Microglia/patologia , Subunidade p50 de NF-kappa B/imunologia , Transdução de Sinais/imunologia , Solubilidade , Células THP-1 , Fator de Transcrição RelA/imunologia
13.
Pulm Pharmacol Ther ; 48: 151-160, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29174840

RESUMO

Recent tuberculosis (TB) drug discovery programme involve continuous pursuit for new chemical entity (NCE) which can be not only effective against both susceptible and resistant strains of Mycobacterium tuberculosis (Mtb) but also safe and faster acting with the target, thereby shortening the prolonged TB treatments. We have identified a potential nitrofuranyl methyl piperazine derivative, IIIM-MCD-211 as new antitubercular agent with minimum inhibitory concentration (MIC) value of 0.0072 µM against H37Rv strain. Objective of the present study is to investigate physicochemical, pharmacokinetic, efficacy and toxicity profile using in-silico, in-vitro and in-vivo model in comprehensive manner to assess the likelihood of developing IIIM-MCD-211 as a clinical candidate. Results of computational prediction reveal that compound does not violate Lipinski's, Veber's and Jorgensen's rule linked with drug like properties and oral bioavailability. Experimentally, IIIM-MCD-211 exhibits excellent lipophilicity that is optimal for oral administration. IIIM-MCD-211 displays evidence of P-glycoprotein (P-gp) induction but no inhibition ability in rhodamine cell exclusion assay. IIIM-MCD-211 shows high permeability and plasma protein binding based on parallel artificial membrane permeability assay (PAMPA) and rapid equilibrium dialysis (RED) assay model, respectively. IIIM-MCD-211 has adequate metabolic stability in rat liver microsomes (RLM) and favourable pharmacokinetics with admirable correlation during dose escalation study in Swiss mice. IIIM-MCD-211 has capability to appear into highly perfusable tissues. IIIM-MCD-211 is able to actively prevent progression of TB infection in chronic infection mice model. IIIM-MCD-211 shows no substantial cytotoxicity in HepG2 cell line. In acute toxicity study, significant increase of total white blood cell (WBC) count in treatment group as compared to control group is observed. Overall, amenable preclinical data make IIIM-MCD-211 ideal candidate for further development of oral anti-TB agent.


Assuntos
Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/efeitos dos fármacos , Nitrofuranos/uso terapêutico , Piperazinas/uso terapêutico , Tuberculose/tratamento farmacológico , Administração Oral , Animais , Antituberculosos/administração & dosagem , Antituberculosos/farmacologia , Antituberculosos/toxicidade , Disponibilidade Biológica , Simulação por Computador , Modelos Animais de Doenças , Progressão da Doença , Relação Dose-Resposta a Droga , Desenho de Fármacos , Feminino , Células Hep G2 , Humanos , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Microssomos Hepáticos/metabolismo , Nitrofuranos/administração & dosagem , Nitrofuranos/farmacologia , Nitrofuranos/toxicidade , Piperazinas/administração & dosagem , Piperazinas/farmacologia , Piperazinas/toxicidade , Ratos , Testes de Toxicidade Aguda
14.
Phytother Res ; 32(10): 1967-1974, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29806225

RESUMO

Curcumin, a natural diarylheptanoid, is extensively used as a food additive or dietary supplement on the regular basis. It is known to have potential to encumber the drug transporters and hepatic drug metabolizing enzymes that lead to pharmacokinetic interactions with drug or food. Daclatasvir is a new orally acting drug for the treatment of chronic Hepatitis C Virus infections. This is a substrate of P-glycoprotein and CYP3A4 that are involved in the major pharmacokinetic interaction. Hence, the studies' aim is to assess for any possible pharmacokinetic interactions. Pharmacokinetic studies of daclatasvir in presence or absence of curcumin were carried out in Wistar rats following oral administration. Parallelly, the oral pharmacokinetics of daclatasvir was also determined in the presence of ketoconazole or quinidine. Studies revealed that plasma level of daclatasvir was not altered significantly during concomitant single dose administration of curcumin, whereas significantly decreased upon pretreatment for 7 days with curcumin at high dose level. Ketoconazole and quinidine markedly increase daclatasvir exposure following concomitant administration with daclatasvir. It can be concluded that dose adjustment is unlikely to be required for intermittent use of curcumin at low dose but cautious for chronic and concomitant use of curcumin at a high dose.


Assuntos
Antivirais/farmacocinética , Curcumina/farmacologia , Imidazóis/farmacocinética , Administração Oral , Animais , Carbamatos , Interações Medicamentosas , Cetoconazol/farmacologia , Masculino , Pirrolidinas , Quinidina/farmacologia , Ratos , Ratos Wistar , Valina/análogos & derivados
15.
Toxicol Appl Pharmacol ; 318: 8-15, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28122196

RESUMO

The limiting factor for the use of Cisplatin in the treatment of different type of cancers is its toxicity and more specifically urogenital toxicity. Oxidative stress is a well-known phenomenon associated with Cisplatin toxicity. However, in Cisplatin treated group, abnormal animal behavior, decreased body weight, cellular and sub-cellular changes in the kidney and sperm abnormality were observed. Our investigation revealed that Cisplatin when administered in combination with a natural product derivative (Urs-12-ene-3α,24ß-diol, labeled as IN0523) resulted in significant restoration of body weight and protection against the pathological alteration caused by Cisplatin to kidney and testis. Sperm count and motility were significantly restored near to normal. Cisplatin caused depletion of defense system i.e. glutathione peroxidase, catalase and superoxide dismutase, which were restored close to normal by treatment of IN0523. Reduction in excessive lipid peroxidation induced by Cisplatin was also found by treatment with IN0523. The result suggests that IN0523 is a potential candidate for ameliorating Cisplatin induced toxicity in the kidney and testes at a dose of 100mg/kg p.o. via inhibiting the oxidative stress/redox status imbalance and may be improving the efflux mechanism.


Assuntos
Cisplatino/toxicidade , Rim/efeitos dos fármacos , Extratos Vegetais/farmacologia , Testículo/efeitos dos fármacos , Triterpenos/farmacologia , Animais , Antineoplásicos/toxicidade , Boswellia , Cristalografia por Raios X , Rim/metabolismo , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Extratos Vegetais/isolamento & purificação , Substâncias Protetoras/isolamento & purificação , Substâncias Protetoras/farmacologia , Distribuição Aleatória , Contagem de Espermatozoides/métodos , Motilidade dos Espermatozoides/efeitos dos fármacos , Motilidade dos Espermatozoides/fisiologia , Testículo/metabolismo , Testículo/patologia , Triterpenos/isolamento & purificação
16.
Bioorg Med Chem ; 25(4): 1440-1447, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28110819

RESUMO

We report the chemical synthesis of Ofornine mimics from l-vasicine, structure-activity relationship studies and their in vivo screening for anti-hypertensive action in Wistar rats. It was observed that most of the analogs possessed anti-hypertensive effect; however, the duration of the effect was variable and mostly transient. The results demonstrated that the analogs 12, 13, 14, 15, and 16 showed a sharp and significant decrease in systolic and diastolic blood pressure for 30-60min after intravenous administration. Analog (S)-(3-hydroxypyrrolidin-1-yl)(2-(pyridin-4-ylamino)phenyl)methanone (8) showed a significant decrease in blood pressure in a dose dependent manner whose maximal response lowered to 79.29±4.26mmHg of SBP and 62.55±2.9 of DBP at 10mg/kg intravenous dose. Further, the significant anti-hypertensive effect of 8 lasted for about 2.5h at 10mg/kg dose. We also evaluated the acute toxicity of the analog 8 as per the OECD guidelines and the compound was found to be safe up to the dose of 2000mg/kg body weight. These preclinical findings suggest that the analog 8 could be considered as a promising lead and a durable anti-hypertensive drug candidate and deserves further investigation. The SAR studies clearly showed that the amide, hydroxyl and pyridine ring plays important role in showing the activity.


Assuntos
Alcaloides/química , Aminopiridinas/farmacologia , Anti-Hipertensivos/farmacologia , Produtos Biológicos/farmacologia , Hipertensão/tratamento farmacológico , Piperidinas/farmacologia , Quinazolinas/química , Aminopiridinas/administração & dosagem , Aminopiridinas/química , Animais , Anti-Hipertensivos/administração & dosagem , Anti-Hipertensivos/química , Produtos Biológicos/administração & dosagem , Produtos Biológicos/química , Pressão Sanguínea/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Injeções Intravenosas , Camundongos , Estrutura Molecular , Piperidinas/administração & dosagem , Piperidinas/química , Ratos , Ratos Wistar , Relação Estrutura-Atividade
17.
Regul Toxicol Pharmacol ; 91: 216-225, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29108848

RESUMO

In spite of unprecedented advances in modern systems of medicine, there is necessity for exploration of traditional plant based secondary metabolites or their semisynthetic derivatives which may results in better therapeutic activity, low toxicity and favourable pharmacokinetics. In this context, computational model based predictions aid medicinal chemists in rational development of new chemical entity having unfavourable pharmacokinetic properties which is a major hurdle for its further development as a drug molecule. Para-coumaric acid (p-CA) and its derivatives found to be have promising antiinflammatory and analgesic activity. IS01957, a p-CA derivative has been identified as dual acting molecule against inflammation and nociception. Therefore, objective of the present study was to investigate pharmacokinetics, efficacy and safety profile based on in-silico, in-vitro and in-vivo model to assess drug likeliness. In the present study, it has excellent pharmacological action in different animal models for inflammation and nociception. Virtual pharmacokinetics related properties of IS01957 have resemblance between envision and experimentation with a few deviations. It has also acceptable safety pharmacological profile in various animal models for central nervous system (CNS), gastro intestinal tract (GIT)/digestive system and cardiovascular system (CVS). Finally, further development of IS01957 is required based on its attractive preclinical profiles.


Assuntos
Inflamação/tratamento farmacológico , Nociceptividade/efeitos dos fármacos , Propionatos/farmacologia , Propionatos/farmacocinética , Animais , Ácidos Cumáricos , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Propionatos/efeitos adversos , Ratos , Ratos Wistar
18.
Chin J Traumatol ; 20(4): 216-221, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28330802

RESUMO

PURPOSE: Orofacial trauma is becoming a leading medical problem worldwide. Most of the studies pertaining to orofacial trauma have been done in urban areas but very little scientific literature is available for rural areas. METHODS: A prospective medical institute-based study of orofacial injury patients was carried out from May 2013 to April 2016 (36 Months). Data regarding incidence, age and sex distribution, causes, types and site of injury, treatment modalities and trauma associated complications were collected and analysed. RESULTS: A total of 784 patients were studied. Males outnumbered females by a ratio of 2.9:1. Age range was 9 months-75 years with the peak incidence in the age-group of 18-34 years. Most injuries were caused by road-side accidents (72.7%), followed by assault and falls in 11.6% and 8% respectively. Soft tissue injuries and mandibular fractures were the most common type of injuries. Head/neck (50.29%) and limb injuries (27.2%) were the most prevalent associated injuries. Surgical debridement and soft tissue suturing was the most common emergency procedure. Closed reduction was performed in 61% of patients and open reduction and internal fixation in 30% of cases and 9% were managed conservatively. Complications occurred in 6.88% of patients, mainly due to infection and malocclusion. The mean duration of hospital stay was (10.12 ± 6.24) days. CONCLUSION: This study highlights the importance of department of dental surgery along with other disciplinaries in the management of orofacial injuries. Road-side accident remains the major etiological factor of orofacial injuries in our setting.


Assuntos
Traumatismos Maxilofaciais/epidemiologia , Acidentes de Trânsito , Adolescente , Adulto , Idoso , Antibacterianos/uso terapêutico , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Tempo de Internação , Masculino , Fraturas Mandibulares/epidemiologia , Traumatismos Maxilofaciais/terapia , Pessoa de Meia-Idade , Estudos Prospectivos , Lesões dos Tecidos Moles/epidemiologia , Adulto Jovem
19.
J Craniofac Surg ; 27(7): e665-e667, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27536919

RESUMO

Oral focal mucinosis is considered as oral counterpart of cutaneous focal mucinosis. The preoperative diagnosis of mucinosis is almost impossible because of its rarity and clinical similarity to other lesions of various etiologies. The histological diagnosis of oral mucinosis is important to better understand the etiopathogenesis, treatment modalities, and any recurrence of the lesion besides differentiating from the other soft tissue lesions.The purpose of this paper is to report the first case of bimaxillary involvement with dome-shaped elevated, rounded, asymptomatic, normally colored swelling in left posterior palatal mucosa and left mandibular posterior region in a 25-year old woman who was diagnosed as oral focal mucinosis histopathologically.


Assuntos
Maxila/diagnóstico por imagem , Doenças da Boca/diagnóstico , Mucosa Bucal/patologia , Mucinoses/diagnóstico , Adulto , Biópsia , Feminino , Humanos , Radiografia
20.
Bioorg Med Chem ; 23(9): 2121-8, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25801159

RESUMO

Cyclic guanosine monophosphate (cGMP) specific phosphodiesterase type-5 (PDE5), a clinically proven target to treat erectile dysfunction and diseases associated with lower cGMP levels in humans, is present in corpus cavernosum, heart, lung, platelets, prostate, urethra, bladder, liver, brain, and stomach. Sildenafil, vardenafil, tadalafil and avanafil are FDA approved drugs in market as PDE5 inhibitors for treating erectile dysfunction. In the present study a lead molecule 4-ethoxy-N-(6-hydroxyhexyl)-3-(1-methyl-7-oxo-3-propyl-6,7-dihydro-1H-pyrazolo[4,3-d]pyrimidin-5-yl)benzenesulfonamide, that is, compound-4a, an analog of pyrazolopyrimidinone scaffold has been identified as selective PDE5 inhibitor. A series of compounds was synthesized by replacing N-methylpiperazine moiety (ring-C) of sildenafil structure with different N-substitutions towards sulfonamide end. Compound-4a showed lower IC50 value (1.5 nM) against PDE5 than parent sildenafil (5.6 nM) in in vitro enzyme assay. The isoform selectivity of the compound-4a against other PDE isoforms was similar to that of the Sildenafil. In corroboration with the in vitro data, this molecule showed better efficacy in in vivo studies using the conscious rabbit model. Also compound-4a exhibited good physicochemical properties like solubility, caco-2 permeability, cLogP along with optimal PK profile having no significant CYP enzyme inhibitory liabilities. Discovery of these novel bioactive compounds may open a new alternative for developing novel preclinical candidates based on this drugable scaffold.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Descoberta de Drogas , Inibidores da Fosfodiesterase 5/química , Inibidores da Fosfodiesterase 5/farmacologia , Pirazóis/química , Pirazóis/farmacologia , Pirimidinonas/química , Pirimidinonas/farmacologia , Animais , Relação Dose-Resposta a Droga , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Inibidores da Fosfodiesterase 5/administração & dosagem , Coelhos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA