Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Soft Matter ; 20(22): 4337-4357, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38639811

RESUMO

We study imbibition of a monodisperse emulsion into high-aspect ratio microfluidic channels with the height h comparable to the droplet diameter d. Two distinct regimes are identified in the imbibition dynamics. In a strongly confined system (the confinement ratio d/h = 1.2 in our experiments), the droplets are flattened between the channel walls and move more slowly compared to the average suspension velocity. As a result, a droplet-free region forms behind the meniscus (separated from the suspension region by a sharp concentration front) and the suspension exhibits strong droplet-density and velocity fluctuations. In a weaker confinement, d/h = 0.65, approximately spherical droplets move faster than the average suspension flow, causing development of a dynamically unstable high-concentration region near the meniscus. This instability results in the formation of dense droplet clusters, which migrate downstream relative to the average suspension flow, thus affecting the entire suspension dynamics. We explain the observed phenomena using linear transport equations for the particle-phase and suspension fluxes driven by the local pressure gradient. We also use a dipolar particle interaction model to numerically simulate the imbibition dynamics. The observed large velocity fluctuations in strongly confined systems are elucidated in terms of migration of self-assembled particle chains with highly anisotropic mobility.

2.
Soft Matter ; 15(24): 4873-4889, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31165134

RESUMO

It was experimentally demonstrated by Migler and his collaborators [Phys. Rev. Lett., 2001, 86, 1023; Langmuir, 2003, 19, 8667] that a strongly confined drop monolayer sheared between two parallel plates can spontaneously develop a flow-oriented drop-chain morphology. Here we show that the formation of the chain-like microstructure is driven by far-field Hele-Shaw quadrupolar interactions between drops, and that drop spacing within chains is controlled by the effective drop repulsion associated with the existence of confinement-induced reversing streamlines, i.e., the swapping trajectory effect. Using direct numerical simulations and an accurate quasi-2D model that incorporates quadrupolar and swapping-trajectory contributions, we analyze microstructural evolution in a monodisperse drop monolayer. Consistent with experimental observations, we find that drop spacing within individual chains is usually uniform. Further analysis shows that at low area fractions all chains have the same spacing, but at higher area fractions there is a large spacing variation from chain to chain. These findings are explained in terms of uncompressed and compressed chains. At low area fractions most chains are uncompressed (spacing equals lst, which is the stable separation of an isolated pair). At higher area fractions compressed chains (with tighter spacing) are formed in a process of chain zipping along y-shaped structural defects. We also discuss the relevance of our findings to other shear-driven systems, such as suspensions of spheres in non-Newtonian fluids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA