Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(46): e2204515119, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343228

RESUMO

Peripheral nerve injury sensitizes a complex network of spinal cord dorsal horn (DH) neurons to produce allodynia and neuropathic pain. The identification of a druggable target within this network has remained elusive, but a promising candidate is the neuropeptide Y (NPY) Y1 receptor-expressing interneuron (Y1-IN) population. We report that spared nerve injury (SNI) enhanced the excitability of Y1-INs and elicited allodynia (mechanical and cold hypersensitivity) and affective pain. Similarly, chemogenetic or optogenetic activation of Y1-INs in uninjured mice elicited behavioral signs of spontaneous, allodynic, and affective pain. SNI-induced allodynia was reduced by chemogenetic inhibition of Y1-INs, or intrathecal administration of a Y1-selective agonist. Conditional deletion of Npy1r in DH neurons, but not peripheral afferent neurons prevented the anti-hyperalgesic effects of the intrathecal Y1 agonist. We conclude that spinal Y1-INs are necessary and sufficient for the behavioral symptoms of neuropathic pain and represent a promising target for future pharmacotherapeutic development of Y1 agonists.


Assuntos
Hiperalgesia , Neuralgia , Camundongos , Animais , Hiperalgesia/tratamento farmacológico , Neuropeptídeo Y/genética , Neuropeptídeo Y/farmacologia , Neuralgia/tratamento farmacológico , Neurônios , Medula Espinal
2.
J Physiol ; 599(10): 2723-2750, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33768539

RESUMO

KEY POINTS: Neuropeptide Y Y1 receptor-expressing neurons in the dorsal horn of the spinal cord contribute to chronic pain. For the first time, we characterized the firing patterns of Y1-expressing neurons in Y1eGFP reporter mice. Under hyperpolarized conditions, most Y1eGFP neurons exhibited fast A-type potassium currents and delayed, short-latency firing (DSLF). Y1eGFP DSLF neurons were almost always rapidly adapting and often exhibited rebound spiking, characteristics of spinal pain neurons under the control of T-type calcium channels. These results will inspire future studies to determine whether tissue or nerve injury downregulates the channels that underlie A-currents, thus unmasking membrane hyperexcitability in Y1-expressing dorsal horn neurons, leading to persistent pain. ABSTRACT: Neuroanatomical and behavioural evidence indicates that neuropeptide Y Y1 receptor-expressing interneurons (Y1-INs) in the superficial dorsal horn (SDH) are predominantly excitatory and contribute to chronic pain. Using an adult ex vivo spinal cord slice preparation from Y1eGFP reporter mice, we characterized firing patterns in response to steady state depolarizing current injection of GFP-positive cells in lamina II, the great majority of which expressed Y1 mRNA (88%). Randomly sampled (RS) and Y1eGFP neurons exhibited five firing patterns: tonic, initial burst, phasic, delayed short-latency <180 ms (DSLF) and delayed long-latency >180 ms (DLLF). When studied at resting membrane potential, most RS neurons exhibited delayed firing, while most Y1eGFP neurons exhibited phasic firing. A preconditioning membrane hyperpolarization produced only subtle changes in the firing patterns of RS neurons, but dramatically shifted Y1eGFP neurons to DSLF (46%) and DLLF (24%). In contrast to RS DSLF neurons, which rarely exhibited spike frequency adaptation, Y1eGFP DSLF neurons were almost always rapidly adapting, a characteristic of nociceptive-responsive SDH neurons. Rebound spiking was more prevalent in Y1eGFP neurons (6% RS vs. 32% Y1eGFP), indicating enrichment of T-type calcium currents. Y1eGFP DSLF neurons exhibited fast A-type potassium currents that are known to delay or limit action potential firing and exhibited smaller current density as compared to RS DSLF neurons. Our results will inspire future studies to determine whether tissue or nerve injury downregulates channels that contribute to A-currents, thus potentially unmasking T-type calcium channel activity and membrane hyperexcitability in Y1-INs, leading to persistent pain.


Assuntos
Potenciais de Ação , Células do Corno Posterior , Receptores de Neuropeptídeo Y , Animais , Potenciais da Membrana , Camundongos , Dor
3.
Neurobiol Dis ; 127: 76-86, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30807826

RESUMO

Painful diabetic neuropathy (PDN) is a devastating neurological complication of diabetes. Methylglyoxal (MG) is a reactive metabolite whose elevation in the plasma corresponds to PDN in patients and pain-like behavior in rodent models of type 1 and type 2 diabetes. Here, we addressed the MG-related spinal mechanisms of PDN in type 2 diabetes using db/db mice, an established model of type 2 diabetes, and intrathecal injection of MG in conventional C57BL/6J mice. Administration of either a MG scavenger (GERP10) or a vector overexpressing glyoxalase 1, the catabolic enzyme for MG, attenuated heat hypersensitivity in db/db mice. In C57BL/6J mice, intrathecal administration of MG produced signs of both evoked (heat and mechanical hypersensitivity) and affective (conditioned place avoidance) pain. MG-induced Ca2+ mobilization in lamina II dorsal horn neurons of C57BL/6J mice was exacerbated in db/db, suggestive of MG-evoked central sensitization. Pharmacological and/or genetic inhibition of transient receptor potential ankyrin subtype 1 (TRPA1), adenylyl cyclase type 1 (AC1), protein kinase A (PKA), or exchange protein directly activated by cyclic adenosine monophosphate (Epac) blocked MG-evoked hypersensitivity in C57BL/6J mice. Similarly, intrathecal administration of GERP10, or inhibitors of TRPA1 (HC030031), AC1 (NB001), or Epac (HJC-0197) attenuated hypersensitivity in db/db mice. We conclude that MG and sensitization of a spinal TRPA1-AC1-Epac signaling cascade facilitate PDN in db/db mice. Our results warrant clinical investigation of MG scavengers, glyoxalase inducers, and spinally-directed pharmacological inhibitors of a MG-TRPA1-AC1-Epac pathway for the treatment of PDN in type 2 diabetes.


Assuntos
Adenilil Ciclases/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Neuropatias Diabéticas/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Aldeído Pirúvico/metabolismo , Canal de Cátion TRPA1/metabolismo , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Diabetes Mellitus Tipo 2/complicações , Masculino , Camundongos , Medição da Dor , Células do Corno Posterior/efeitos dos fármacos , Células do Corno Posterior/metabolismo , Aldeído Pirúvico/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
4.
bioRxiv ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38854096

RESUMO

The cardinal symptoms of Parkinson's disease (PD) such as bradykinesia and akinesia are debilitating, and treatment options remain inadequate. The loss of nigrostriatal dopamine neurons in PD produces motor symptoms by shifting the balance of striatal output from the direct (go) to indirect (no-go) pathway in large part through changes in the excitatory connections and intrinsic excitabilities of the striatal projection neurons (SPNs). Here, we report using two different experimental models that a transient increase in striatal dopamine and enhanced D1 receptor activation, during 6-OHDA dopamine depletion, prevent the loss of mature spines and dendritic arbors on direct pathway projection neurons (dSPNs) and normal motor behavior for up to 5 months. The primary motor cortex and midline thalamic nuclei provide the major excitatory connections to SPNs. Using ChR2-assisted circuit mapping to measure inputs from motor cortex M1 to dorsolateral dSPNs, we observed a dramatic reduction in both experimental model mice and controls following dopamine depletion. Changes in the intrinsic excitabilities of SPNs were also similar to controls following dopamine depletion. Future work will examine thalamic connections to dSPNs. The findings reported here reveal previously unappreciated plasticity mechanisms within the basal ganglia that can be leveraged to treat the motor symptoms of PD.

5.
Biol Psychiatry ; 93(4): 370-381, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36473754

RESUMO

BACKGROUND: The central amygdala (CeA) is a bilateral hub of pain and emotional processing with well-established functional lateralization. We reported that optogenetic manipulation of neural activity in the left and right CeA has opposing effects on bladder pain. METHODS: To determine the influence of calcitonin gene-related peptide (CGRP) signaling from the parabrachial nucleus on this diametrically opposed lateralization, we administered CGRP and evaluated the activity of CeA neurons in acute brain slices as well as the behavioral signs of bladder pain in the mouse. RESULTS: We found that CGRP increased firing in both the right and left CeA neurons. Furthermore, we found that CGRP administration in the right CeA increased behavioral signs of bladder pain and decreased bladder pain-like behavior when administered in the left CeA. CONCLUSIONS: These studies reveal a parabrachial-to-amygdala circuit driven by opposing actions of CGRP that determines hemispheric lateralization of visceral pain.


Assuntos
Núcleo Central da Amígdala , Núcleos Parabraquiais , Camundongos , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Dor , Núcleo Central da Amígdala/metabolismo , Neurônios/fisiologia , Emoções , Núcleos Parabraquiais/metabolismo
6.
Nat Commun ; 14(1): 3871, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391431

RESUMO

TRPA1 channels are expressed in nociceptive neurons, where they detect noxious stimuli, and in the mammalian cochlea, where their function is unknown. Here we show that TRPA1 activation in the supporting non-sensory Hensen's cells of the mouse cochlea causes prolonged Ca2+ responses, which propagate across the organ of Corti and cause long-lasting contractions of pillar and Deiters' cells. Caged Ca2+ experiments demonstrated that, similar to Deiters' cells, pillar cells also possess Ca2+-dependent contractile machinery. TRPA1 channels are activated by endogenous products of oxidative stress and extracellular ATP. Since both these stimuli are present in vivo after acoustic trauma, TRPA1 activation after noise may affect cochlear sensitivity through supporting cell contractions. Consistently, TRPA1 deficiency results in larger but less prolonged noise-induced temporary shift of hearing thresholds, accompanied by permanent changes of latency of the auditory brainstem responses. We conclude that TRPA1 contributes to the regulation of cochlear sensitivity after acoustic trauma.


Assuntos
Perda Auditiva Provocada por Ruído , Canal de Cátion TRPA1 , Animais , Camundongos , Cóclea , Células Epiteliais , Potenciais Evocados Auditivos do Tronco Encefálico , Células Labirínticas de Suporte , Canal de Cátion TRPA1/genética
7.
Pflugers Arch ; 459(3): 427-39, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19809831

RESUMO

Using atomic force microscopy, we imaged the cytosolic surface of the lateral plasma membrane of outer hair cells from guinea pigs' inner ear. We used a "cell-free" preparation, in which a patch of plasma membrane was firmly attached to a substrate and the cytoplasmic face was exposed. The membrane patches contained densely packed particles whose diameter, after correcting for the geometry of the probing tip, was approximately 10 nm. The particles were predominantly aligned unidirectionally with spacing of approximately 36 nm. The density of the particle was approximately 850 microm(-2), which could be an underestimate presumably due to the method of sample preparation. Antibody-labeled specimens showed particles more elevated than unlabeled preparation indicative of primary and secondary antibody complexes. The corrected diameters of these particles labeled with anti-actin were approximately 12 nm while that with antiprestin were approximately 8 nm. The alignment pattern in antiprestin-labeled specimens resembled that of the unlabeled preparation. Specimens labeled with actin antibodies did not show such alignment. We interpret that the particles observed in the unlabeled membranes correspond to the 10-nm particles reported by electron microscopy and that these particles contain prestin, a member of the SLC26 family, which is essential for electromotility.


Assuntos
Membrana Celular , Células Ciliadas Auditivas Externas/citologia , Células Ciliadas Auditivas Externas/metabolismo , Microscopia de Força Atômica/métodos , Actinas/metabolismo , Animais , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Sistema Livre de Células , Cobaias , Células Ciliadas Auditivas Externas/química , Microscopia de Força Atômica/instrumentação , Tamanho da Partícula , Proteínas/química , Proteínas/metabolismo , Propriedades de Superfície
8.
Exp Neurol ; 314: 58-66, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30660616

RESUMO

Acute inflammation induces sensitization of nociceptive neurons and triggers the accumulation of calcium permeable (CP) α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) in the dorsal horn of the spinal cord. This coincides with behavioral signs of acute inflammatory pain, but whether CP-AMPARs contribute to chronic pain remains unclear. To evaluate this question, we first constructed current-voltage (IV) curves of C-fiber stimulus-evoked, AMPAR-mediated EPSCs in lamina II to test for inward rectification, a key characteristic of CP-AMPARs. We found that the intraplantar injection of complete Freund's adjuvant (CFA) induced an inward rectification at 3 d that persisted to 21 d after injury. Furthermore, the CP- AMPAR antagonist IEM-1460 (50 µM) inhibited AMPAR-evoked Ca2+ transients 21d after injury but had no effect in uninflamed mice. We then used a model of long-lasting vulnerability for chronic pain that is determined by the balance between latent central sensitization (LCS) and mu opioid receptor constitutive activity (MORCA). When administered 21 d after the intraplantar injection of CFA, intrathecal administration of the MORCA inverse agonist naltrexone (NTX, 1 µg, i.t.) reinstated mechanical hypersensitivity, and superfusion of spinal cord slices with NTX (10 µM) increased the peak amplitude of AMPAR-evoked Ca2+ transients in lamina II neurons. The CP-AMPAR antagonist naspm (0-10 nmol, i.t.) inhibited these NTX-induced increases in mechanical hypersensitivity. NTX had no effect in uninflamed mice. Subsequent western blot analysis of the postsynaptic density membrane fraction from lumbar dorsal horn revealed that CFA increased GluA1 expression at 2 d and GluA4 expression at both 2 and 21 d post-injury, indicating that not just the GluA1 subunit, but also the GluA4 subunit, contributes to the expression of CP-AMPARs and synaptic strength during hyperalgesia. GluA2 expression increased at 21 d, an unexpected result that requires further study. We conclude that after tissue injury, dorsal horn AMPARs retain a Ca2+ permeability that underlies LCS. Because of their effectiveness in reducing naltrexone-induced reinstatement of hyperalgesia and potentiation of AMPAR-evoked Ca2+ signals, CP-AMPAR inhibitors are a promising class of agents for the treatment of chronic inflammatory pain.


Assuntos
Cálcio/metabolismo , Dor Crônica/fisiopatologia , Receptores de AMPA/metabolismo , Receptores Opioides/metabolismo , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia , Adamantano/análogos & derivados , Adamantano/farmacologia , Animais , Dor Crônica/induzido quimicamente , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Adjuvante de Freund , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Fibras Nervosas Amielínicas , Nociceptividade , Células do Corno Posterior/efeitos dos fármacos , Receptores de AMPA/antagonistas & inibidores , Receptores de Glutamato/metabolismo , Sinapses/efeitos dos fármacos
9.
Nat Commun ; 8(1): 43, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28663585

RESUMO

Inner ear hair cells detect sound through deflection of stereocilia, the microvilli-like projections that are arranged in rows of graded heights. Calcium and integrin-binding protein 2 is essential for hearing and localizes to stereocilia, but its exact function is unknown. Here, we have characterized two mutant mouse lines, one lacking calcium and integrin-binding protein 2 and one carrying a human deafness-related Cib2 mutation, and show that both are deaf and exhibit no mechanotransduction in auditory hair cells, despite the presence of tip links that gate the mechanotransducer channels. In addition, mechanotransducing shorter row stereocilia overgrow in hair cell bundles of both Cib2 mutants. Furthermore, we report that calcium and integrin-binding protein 2 binds to the components of the hair cell mechanotransduction complex, TMC1 and TMC2, and these interactions are disrupted by deafness-causing Cib2 mutations. We conclude that calcium and integrin-binding protein 2 is required for normal operation of the mechanotransducer channels and is involved in limiting the growth of transducing stereocilia.Inner ear hair cells detect sound through deflection of stereocilia that harbor mechanically-gated channels. Here the authors show that protein responsible for Usher syndrome, CIB2, interacts with these channels and is essential for their function and hearing in mice.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Células Ciliadas Auditivas/fisiologia , Mecanotransdução Celular/fisiologia , Proteínas de Membrana/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Surdez/genética , Regulação da Expressão Gênica , Células HEK293 , Humanos , Proteínas de Membrana/genética , Camundongos , Mutação , Técnicas de Patch-Clamp
10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(2 Pt 1): 021708, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16196586

RESUMO

Fréedericksz transition measurements were performed on the Merck liquid crystal SCE12R. The results were used to determine the quartic contribution to the free energy associated with molecular tilt relative to the layer normal in the surface-induced smectic layers above the nematic-smectic-A transition temperature T(NA) . Both the quadratic and quartic coefficients are consistent with the scaling relation (T- T(NA))(-3nu) , where nu is the correlation length critical exponent, and their ratio was approximately constant with T . The dielectric constants, the refractive indices, and the bend elastic constant for SCE12R also are reported.

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(4 Pt 1): 041718, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12005857

RESUMO

A Fréedericksz transition measurement is reported for a liquid crystal cell composed of surfactant-coated substrates. One substrate was locally scribed with the stylus of an atomic force microscope to create a nanoscopic grooved structure. The Fréedericksz threshold voltage was found to be smaller in the scribed region than in the unscribed region, indicating that the corrugated surface disrupts surface-induced smectic order, and that the effect grows toward the nematic-smectic-A transition temperature T(NA) in conjunction with the smectic correlation length.

12.
J Clin Invest ; 123(9): 4036-49, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23979167

RESUMO

The two compositionally distinct extracellular cochlear fluids, endolymph and perilymph, are separated by tight junctions that outline the scala media and reticular lamina. Mutations in TRIC (also known as MARVELD2), which encodes a tricellular tight junction protein known as tricellulin, lead to nonsyndromic hearing loss (DFNB49). We generated a knockin mouse that carries a mutation orthologous to the TRIC coding mutation linked to DFNB49 hearing loss in humans. Tricellulin was absent from the tricellular junctions in the inner ear epithelia of the mutant animals, which developed rapidly progressing hearing loss accompanied by loss of mechanosensory cochlear hair cells, while the endocochlear potential and paracellular permeability of a biotin-based tracer in the stria vascularis were unaltered. Freeze-fracture electron microscopy revealed disruption of the strands of intramembrane particles connecting bicellular and tricellular junctions in the inner ear epithelia of tricellulin-deficient mice. These ultrastructural changes may selectively affect the paracellular permeability of ions or small molecules, resulting in a toxic microenvironment for cochlear hair cells. Consistent with this hypothesis, hair cell loss was rescued in tricellulin-deficient mice when generation of normal endolymph was inhibited by a concomitant deletion of the transcription factor, Pou3f4. Finally, comprehensive phenotypic screening showed a broader pathological phenotype in the mutant mice, which highlights the non-redundant roles played by tricellulin.


Assuntos
Células Ciliadas Auditivas Externas/metabolismo , Perda Auditiva/metabolismo , Proteína 2 com Domínio MARVEL/deficiência , Junções Íntimas/metabolismo , Animais , Feminino , Perda Auditiva/patologia , Proteína 2 com Domínio MARVEL/genética , Masculino , Potenciais da Membrana , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Varredura , Mutação de Sentido Incorreto , Órgão Espiral/patologia , Estria Vascular/metabolismo , Estria Vascular/patologia , Vestíbulo do Labirinto/metabolismo , Vestíbulo do Labirinto/patologia
13.
Nat Genet ; 44(11): 1265-71, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23023331

RESUMO

Sensorineural hearing loss is genetically heterogeneous. Here, we report that mutations in CIB2, which encodes a calcium- and integrin-binding protein, are associated with nonsyndromic deafness (DFNB48) and Usher syndrome type 1J (USH1J). One mutation in CIB2 is a prevalent cause of deafness DFNB48 in Pakistan; other CIB2 mutations contribute to deafness elsewhere in the world. In mice, CIB2 is localized to the mechanosensory stereocilia of inner ear hair cells and to retinal photoreceptor and pigmented epithelium cells. Consistent with molecular modeling predictions of calcium binding, CIB2 significantly decreased the ATP-induced calcium responses in heterologous cells, whereas mutations in deafness DFNB48 altered CIB2 effects on calcium responses. Furthermore, in zebrafish and Drosophila melanogaster, CIB2 is essential for the function and proper development of hair cells and retinal photoreceptor cells. We also show that CIB2 is a new member of the vertebrate Usher interactome.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Perda Auditiva Neurossensorial/genética , Mutação , Síndromes de Usher/genética , Animais , Células COS , Proteínas de Ligação ao Cálcio/metabolismo , Chlorocebus aethiops , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Ligação Genética , Células Ciliadas Vestibulares/metabolismo , Células Ciliadas Vestibulares/patologia , Perda Auditiva Neurossensorial/fisiopatologia , Humanos , Camundongos , Linhagem , Conformação Proteica , Relação Estrutura-Atividade , Síndromes de Usher/fisiopatologia , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA