Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dig Dis Sci ; 67(8): 3497-3507, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34383198

RESUMO

The liver is an organ of vital importance in the body; it is the center of metabolic activities and acts as the primary line of defense against toxic compounds. Exposure to environmental toxicants is an unavoidable fallout from rapid industrialization across the world and is even higher in developing countries. Technological development and industrialization have led to the release of toxicants such as pollutant toxic gases, chemical discharge, industrial effluents, pesticides and solvents, into the environment. In the last few years, a growing body of evidence has shed light on the potential impact of environmental toxicants on liver health, in particular, on non-alcoholic fatty liver disease (NAFLD) incidence and progression. NAFLD is a multifactorial disease linked to metabolic derangement including diabetes and other complications. Environmental toxicants including xenobiotics and pollutants may have a direct or indirect steatogenic/fibrogenic impact on the liver and should be considered as risk factors associated with NAFLD. This review discusses the contribution of environmental toxicants toward the increasing disease burden of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Efeitos Psicossociais da Doença , Humanos , Incidência , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Fatores de Risco
2.
Hum Mol Genet ; 28(12): 1971-1981, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30715350

RESUMO

Titin-truncating variants (TTNtv) are the most common genetic cause of dilated cardiomyopathy. TTNtv occur in ~1% of the general population and causes subclinical cardiac remodeling in asymptomatic carriers. In rat models with either proximal or distal TTNtv, we previously showed altered cardiac metabolism at baseline and impaired cardiac function in response to stress. However, the molecular mechanism(s) underlying these effects remains unknown. In the current study, we used rat models of TTNtv to investigate the effect of TTNtv on autophagy and mitochondrial function, which are essential for maintaining cellular metabolic homeostasis and cardiac function. In both the proximal and distal TTNtv rat models, we found increased levels of LC3B-II and p62 proteins, indicative of diminished autophagic degradation. The accumulation of autophagosomes and p62 protein in cardiomyocytes was also demonstrated by electron microscopy and immunochemistry, respectively. Impaired autophagy in the TTNtv heart was associated with increased phosphorylation of mTOR and decreased protein levels of the lysosomal protease, cathepsin B. In addition, TTNtv hearts showed mitochondrial dysfunction, as evidenced by decreased oxygen consumption rate in cardiomyocytes, increased levels of reactive oxygen species and mitochondrial protein ubiquitination. We also observed increased acetylation of mitochondrial proteins associated with decreased NAD+/NADH ratio in the TTNtv hearts. mTORC1 inhibitor, rapamycin, was able to rescue the impaired autophagy in TTNtv hearts. In summary, TTNtv leads to impaired autophagy and mitochondrial function in the heart. These changes not only provide molecular mechanisms that underlie TTNtv-associated ventricular remodeling but also offer potential targets for its intervention.


Assuntos
Autofagia/genética , Cardiomiopatia Dilatada/genética , Conectina/genética , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Acetilação , Animais , Autofagossomos/metabolismo , Autofagossomos/ultraestrutura , Cardiomiopatia Dilatada/metabolismo , Catepsina B/metabolismo , Células Cultivadas , Conectina/metabolismo , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias Cardíacas/patologia , Proteínas Mitocondriais/metabolismo , NAD/análogos & derivados , NAD/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Deleção de Sequência , Proteína Sequestossoma-1/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Ubiquitinação
3.
Gastroenterology ; 157(3): 777-792.e14, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31078624

RESUMO

BACKGROUND & AIMS: We studied the role of interleukin 11 (IL11) signaling in the pathogenesis of nonalcoholic steatohepatitis (NASH) using hepatic stellate cells (HSCs), hepatocytes, and mouse models of NASH. METHODS: We stimulated mouse and human fibroblasts, HSCs, or hepatocytes with IL11 and other cytokines and analyzed them by imaging, immunoblot, and functional assays and enzyme-linked immunosorbent assays. Mice were given injections of IL11. Mice with disruption of the interleukin 11 receptor subunit alpha1 gene (Il11ra1-/-) mice and Il11ra1+/+ mice were fed a high-fat methionine- and choline-deficient diet (HFMCD) or a Western diet with liquid fructose (WDF) to induce steatohepatitis; control mice were fed normal chow. db/db mice were fed with methionine- and choline-deficient diet for 12 weeks and C57BL/6 NTac were fed with HFMCD for 10 weeks or WDF for 16 weeks. Some mice were given intraperitoneal injections of anti-IL11 (X203), anti-IL11RA (X209), or a control antibody at different timepoints on the diets. Livers and blood were collected; blood samples were analyzed by biochemistry and liver tissues were analyzed by histology, RNA sequencing, immunoblots, immunohistochemistry, hydroxyproline, and mass cytometry time of flight assays. RESULTS: HSCs incubated with cytokines produced IL11, resulting in activation (phosphorylation) of ERK and expression of markers of fibrosis. Livers of mice given injections of IL11 became damaged, with increased markers of fibrosis, hepatocyte cell death and inflammation. Following the HFMCD or WDF, livers from Il11ra1-/- mice had reduced steatosis, fibrosis, expression of markers of inflammation and steatohepatitis, compared to and Il11ra1+/+ mice on the same diets. Depending on the time of administration of anti-IL11 or anti-IL11RA antibodies to wild-type mice on the HFMCD or WDF, or to db/db mice on the methionine and choline-deficient diet, the antibodies prevented, stopped, or reversed development of fibrosis and steatosis. Blood samples from Il11ra1+/+ mice fed the WDF and given injections of anti-IL11 or anti-IL11RA, as well as from Il11ra1-/- mice fed WDF, had lower serum levels of lipids and glucose than mice not injected with antibody or with disruption of Il11ra1. CONCLUSIONS: Neutralizing antibodies that block IL11 signaling reduce fibrosis, steatosis, hepatocyte death, inflammation and hyperglycemia in mice with diet-induced steatohepatitis. These antibodies also improve the cardiometabolic profile of mice and might be developed for the treatment of NASH.


Assuntos
Anticorpos Neutralizantes/farmacologia , Hepatite/prevenção & controle , Subunidade alfa de Receptor de Interleucina-11/metabolismo , Interleucina-11/antagonistas & inibidores , Cirrose Hepática Experimental/prevenção & controle , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Animais , Morte Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Hepatite/genética , Hepatite/metabolismo , Hepatite/patologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-11/metabolismo , Subunidade alfa de Receptor de Interleucina-11/deficiência , Subunidade alfa de Receptor de Interleucina-11/genética , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática Experimental/genética , Cirrose Hepática Experimental/metabolismo , Cirrose Hepática Experimental/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Transdução de Sinais/efeitos dos fármacos , Células THP-1
4.
Biochem Biophys Res Commun ; 532(4): 570-575, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32900486

RESUMO

Hepatocellular cancer (HCC) is one of the leading causes of mortality worldwide. Unfortunately, a limited choice of anti-cancer drugs is available for treatment, owing to their minimal efficacy and development of acquired resistance. Autophagy, a cellular survival pathway, often exhibits a pleiotropic role in HCC progression. Studies show increased autophagy in established HCC, promoting the survival of HCC cells in the tumour microenvironment. Therefore, novel anti-autophagy drugs hold promise for preventing HCC progression. Here, using a non-biased transcriptomics analysis in HepG2 cells we demonstrate the existence of an autophagy-FOXM1 nexus regulating growth in HepG2 cells. Additionally, we show that suppression of autophagy by an Unc-51 Like Autophagy Activating Kinase 1(ULK1) inhibitor not only attenuates the expression of FOXM1 and its transcriptional targets, but also has a synergistic effect on the inhibition of HepG2 growth when combined with FOXM1 inhibitors. Thus, the autophagic protein, ULK1, is a promising candidate for preventing HCC progression. Collectively, our results provide new insight into the role of autophagy in HCC growth and are a proof-of concept for combinatorial therapy using ULK1 and FOXM1 inhibitors.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Autofagia , Carcinoma Hepatocelular/metabolismo , Proteína Forkhead Box M1/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Hepáticas/metabolismo , Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/antagonistas & inibidores , Carcinoma Hepatocelular/genética , Proliferação de Células , Proteína Forkhead Box M1/antagonistas & inibidores , Inativação Gênica , Células Hep G2 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Neoplasias Hepáticas/genética , Transdução de Sinais/efeitos dos fármacos
5.
Neurochem Res ; 45(9): 2184-2195, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32613347

RESUMO

Role of autophagy in Japanese encephalitis viral (JEV) infection is not well known. In the present study, we reported the role of autophagy flux in microglia activation, neurobehavioral function and neuronal death using a mouse model of JEV. Markers for autophagy (LC3-II/I, SQSTM1/P62, phos-Akt, phos-AMPK), and neuronal death (cleaved caspase 12, H2Ax, polyubiquitin) were investigated by western blot at 1, 3 and 7 days post inoculation. Cathepsin D was measured in cerebral cotex of JEV infected mice spectrophotometrically. Microglia activation and pro-inflammatory cytokines (IL1ß, TNF-α, IFNγ, IL6) were measured by immunohistochemistry, western blot and qPCR analysis. In order to determine the neuroinflammatory changes and autophagy mediated neuronal cell death, BV2-microglia and N2a-neuronal cells were used. Autophagy activation marker LC3-II/I and its substrate SQSTM1/P62 were significantly increased while cathepsin D activity was decreased on day 7 post inoculation in cerebral cortex. Microglia in cortex were activated and showed higher expression of proinflammatory mRNA of IL1ß, TNF-α, IFNγ and IL6, with increased DNA damage (H2AX) and neuronal cell death pathways in hippocampus and neurobehavioral dysfunction. Similar observations on JEV infection mediated autophagy flux inhibition and neuronal cell death was found in N2a neuronal cell. Collectively, our study provides evidence on the role of autophagy regulation, microglial activation and neurodegeneration following JEV infection.


Assuntos
Autofagia/fisiologia , Vírus da Encefalite Japonesa (Espécie)/patogenicidade , Encefalite Viral/fisiopatologia , Microglia/metabolismo , Animais , Apoptose/fisiologia , Encéfalo/citologia , Encéfalo/fisiopatologia , Lisossomos/metabolismo , Camundongos Endogâmicos BALB C , Neurônios/metabolismo
6.
Exp Mol Pathol ; 114: 104413, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32151561

RESUMO

Maternal inflammation ensuing from high-fat diet (HFD) intake during pregnancy is related to spontaneous preterm birth and respiratory impairment among premature infants. Recently, a circadian aligned dietary intervention referred to as Time-restricted feeding (TRF) has been reported to have beneficial metabolic effects. This study aimed to assess the effects of maternal TRF on fetal lung injury caused by maternal HFD intake. Female Wistar rats were kept on following three dietary regimens; Ad libitum normal chow diet (NCD-AL), Ad libitum HFD (HFD-AL) and Time-restricted fed HFD (HFD-TRF) from 5 months before mating and continued through pregnancy. Fetal lung samples were collected on the embryonic day 18.5, and apoptotic and inflammatory markers were assessed using TUNEL assay, western blotting, and qRT-PCR. Our results showed that TRF considerably prevented maternal HFD-induced apoptosis in fetal lung tissue that corroborated with a reduction in caspase activation and increased levels of anti-apoptotic BCL2 family proteins together with a lower level of ER-stress and autophagy markers including ATF6, CHOP and LC3-II. Besides, fetal lungs from HFD-TRF dams exhibited reduced expression of inflammatory genes that correlated with reduction and apoptotic injury throughout fetal development. Our results thus put forth TRF as a unique non-pharmacological approach to boost perinatal health beneath metabolic stress.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Inflamação/prevenção & controle , Lesão Pulmonar/prevenção & controle , Relações Materno-Fetais , Animais , Peso Corporal , Feminino , Feto/fisiopatologia , Humanos , Inflamação/etiologia , Inflamação/fisiopatologia , Pulmão/fisiopatologia , Lesão Pulmonar/etiologia , Lesão Pulmonar/fisiopatologia , Camundongos , Gravidez , Ratos , Ratos Wistar , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia
7.
Int J Mol Sci ; 21(7)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244266

RESUMO

Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors which belong to the nuclear hormone receptor superfamily. They regulate key aspects of energy metabolism within cells. Recently, PPARα has been implicated in the regulation of autophagy-lysosomal function, which plays a key role in cellular energy metabolism. PPARα transcriptionally upregulates several genes involved in the autophagy-lysosomal degradative pathway that participates in lipolysis of triglycerides within the hepatocytes. Interestingly, a reciprocal regulation of PPARα nuclear action by autophagy-lysosomal activity also exists with implications in lipid metabolism. This review succinctly discusses the unique relationship between PPARα nuclear action and lysosomal activity and explores its impact on hepatic lipid homeostasis under pathological conditions such as non-alcoholic fatty liver disease (NAFLD).


Assuntos
Lipólise/fisiologia , Fígado/metabolismo , Lisossomos/metabolismo , PPAR alfa/metabolismo , Animais , Autofagia/genética , Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Humanos , Lisossomos/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Correpressor 1 de Receptor Nuclear/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Triglicerídeos/metabolismo
8.
Biochem Biophys Res Commun ; 514(2): 415-421, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31053302

RESUMO

Maternal nutrition has become a major public health concern over recent years and is a known predictor of adverse long-term metabolic derangement in offspring. Time-restricted feeding (TRF), wherein food consumption is restricted to the metabolically active phase of the day, is a dietary approach that improves metabolic parameters when consuming a high-fat diet (HFD). Here, we tested whether TRF could reduce maternal HFD associated inflammation and thereby mitigate defects in fetal organ developmental. Female rats were kept on following three dietary regimens; Ad libitum normal chow diet (NCD-AL), Ad libitum HFD (HFD-AL) and Time-restricted fed HFD (HFD-TRF) from 5 months prior to mating and continued throughout pregnancy. Rat dams were sacrificed at embryonic day 18.5 (ED18.5) and placental tissues from these rats were processed for the analysis of cellular apoptosis, inflammatory cytokines (TNFα and IL-6), oxidative stress, endoplasmic reticulum (ER) stress and autophagy. Furthermore, fetal hepatic triglyceride (TG) content and fetal lung maturation were assessed at ED18.5. Biochemical analysis revealed that HFD-TRF rat had significantly lower serum TG levels and body weight compared to HFD-AL rats. Additionally, TRF significantly blocked HFD-induced placental apoptosis and inflammation via minimizing cellular stress, and restoring autophagic flux. In addition, fetal hepatosteatosis and delayed fetal lung maturation induced by HFD was significantly ameliorated in HFD-TRF compared to HFD-AL. Collectively, our results suggest that reducing placental inflammation via TRF could prevent adverse fetal metabolic outcomes in pregnancies complicated by maternal obesity.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Jejum , Feto/efeitos dos fármacos , Feto/embriologia , Inflamação/prevenção & controle , Placenta/efeitos dos fármacos , Placenta/patologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Humanos , Doenças Metabólicas/prevenção & controle , Obesidade/sangue , Estresse Oxidativo/efeitos dos fármacos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Triglicerídeos/sangue
9.
Biochem Biophys Res Commun ; 506(3): 597-603, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30366665

RESUMO

Hypothyroidism has been associated with better recovery from cerebral ischemia-reperfusion (IR) injury in humans. However, any therapeutic advantage of inducing hypothyroidism for mitigating IR injury without invoking the adverse effect of whole body hypothyroidism remains a challenge. We hypothesize that a deiodinase II (D2) inhibitor reverse triiodothyronine (rT3) may render brain specific hypometabolic state to ensue reduced damage during an acute phase of cerebral ischemia without affecting circulating thyroid hormone levels. Preclinical efficacy of rT3 as a neuroprotective agent was determined in rat model of middle cerebral artery occlusion (MCAO) induced cerebral IR and in oxygen glucose deprivation/reoxygenation (OGD/R) model in vitro. rT3 administration in rats significantly reduced neuronal injury markers, infarct size and neurological deficit upon ischemic insult. Similarly, rT3 increased cellular survival in primary cerebral neurons under OGD/R stress. Based on our results from both in vivo as well as in vitro models of ischemia reperfusion injury we propose rT3 as a novel therapeutic agent in reducing neuronal damage and improving stroke outcome.


Assuntos
Traumatismo por Reperfusão/tratamento farmacológico , Tri-Iodotironina Reversa/uso terapêutico , Animais , Pressão Sanguínea/efeitos dos fármacos , Células Cultivadas , Glucose/deficiência , Frequência Cardíaca/efeitos dos fármacos , Iodeto Peroxidase/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Ratos Sprague-Dawley , Traumatismo por Reperfusão/fisiopatologia , Traumatismo por Reperfusão/prevenção & controle , Tri-Iodotironina Reversa/farmacologia
10.
Biochem Biophys Res Commun ; 502(3): 375-381, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-29852171

RESUMO

Thyroid hormones (TH) of maternal origin are crucial regulator of mammalian brain development during embryonic period. Although maternal TH deficiency during the critical periods of embryonic neo-cortical development often results in irreversible clinical outcomes, the fundamental basis of these abnormalities at a molecular level is still obscure. One of the key developmental process affected by maternal TH insufficiency is the delay in astrocyte maturation. Glial fibrillary acidic protein (Gfap) is a predominant cell marker of mature astrocyte and is regulated by TH status. Inspite, of being a TH responsive gene during neocortical development the mechanistic basis of Gfap transcriptional regulation by TH has remained elusive. In this study using rat model of maternal hypothyroidism, we provide evidence for an epigenetic silencing of Gfap under TH insufficiency and its recovery upon TH supplementation. Our results demonstrate increased DNA methylation coupled with decreased histone acetylation at the Gfap promoter leading to suppression of Gfap expression under maternal hypothyroidism. In concordance, we also observed a significant increase in histone deacetylase (HDAC) activity in neocortex of TH deficient embryos. Collectively, these results provide novel insight into the role of TH regulated epigenetic mechanisms, including DNA methylation, and histone modifications, which are critically important in mediating precise temporal neural gene regulation.


Assuntos
Epigênese Genética , Proteína Glial Fibrilar Ácida/genética , Hipotireoidismo/complicações , Hipotireoidismo/genética , Complicações na Gravidez/genética , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Metilação de DNA , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Histona Desacetilases/metabolismo , Hipotireoidismo/tratamento farmacológico , Troca Materno-Fetal/genética , Neurogênese/genética , Gravidez , Complicações na Gravidez/tratamento farmacológico , Complicações na Gravidez/metabolismo , Regiões Promotoras Genéticas , Ratos , Ratos Sprague-Dawley , Hormônios Tireóideos/administração & dosagem , Hormônios Tireóideos/deficiência
11.
J Biol Chem ; 291(1): 198-214, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26453307

RESUMO

MTORC2-AKT is a key regulator of carbohydrate metabolism and insulin signaling due to its effects on FOXO1 phosphorylation. Interestingly, both FOXO1 and thyroid hormone (TH) have similar effects on carbohydrate and energy metabolism as well as overlapping transcriptional regulation of many target genes. Currently, little is known about the regulation of MTORC2-AKT or FOXO1 by TH. Accordingly, we performed hepatic transcriptome profiling in mice after FOXO1 knockdown in the absence or presence of TH, and we compared these results with hepatic FOXO1 and THRB1 (TRß1) ChIP-Seq data. We identified a subset of TH-stimulated FOXO1 target genes that required co-regulation by FOXO1 and TH. TH activation of FOXO1 was directly linked to an increase in SIRT1-MTORC2 interaction and RICTOR deacetylation. This, in turn, led to decreased AKT and FOXO1 phosphorylation. Moreover, TH increased FOXO1 nuclear localization, DNA binding, and target gene transcription by reducing AKT-dependent FOXO1 phosphorylation in a THRB1-dependent manner. These events were associated with TH-mediated oxidative phosphorylation and NAD(+) production and suggested that downstream metabolic effects by TH can post-translationally activate other transcription factors. Our results showed that RICTOR/MTORC2-AKT can integrate convergent hormonal and metabolic signals to provide coordinated and sensitive regulation of hepatic FOXO1-target gene expression.


Assuntos
Proteínas de Transporte/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Hormônios Tireóideos/farmacologia , Acetilação/efeitos dos fármacos , Animais , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Imunoprecipitação da Cromatina , Ativação Enzimática/efeitos dos fármacos , Proteína Forkhead Box O1 , Células Hep G2 , Humanos , Fígado/efeitos dos fármacos , Masculino , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos Endogâmicos C57BL , NAD/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina , Receptores dos Hormônios Tireóideos/metabolismo , Sirtuína 1/metabolismo , Regulação para Cima/efeitos dos fármacos
12.
Mol Genet Metab ; 122(3): 95-98, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28888852

RESUMO

GSD Ia (von Gierke Disease, Glycogen Storage Disease Type Ia) is a devastating genetic disorder with long-term sequelae, such as non-alcoholic fatty liver disease and renal failure. Down-regulated autophagy is involved in the development of hepatic metabolic dysfunction in GSD Ia; however, the role of autophagy in the renal pathology is unknown. Here we show that autophagy is impaired and endoplasmic reticulum (ER) stress is increased in the kidneys of a mouse model of GSD Ia. Induction of autophagy by rapamycin also reduces this ER stress. Taken together, these results show an additional role for autophagy down-regulation in the pathogenesis of GSD Ia, and provide further justification for the use of autophagy modulators in GSD Ia.


Assuntos
Autofagia/genética , Estresse do Retículo Endoplasmático/genética , Doença de Depósito de Glicogênio Tipo I/fisiopatologia , Rim/patologia , Animais , Autofagia/efeitos dos fármacos , Modelos Animais de Doenças , Regulação para Baixo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glucose-6-Fosfatase/metabolismo , Glucose-6-Fosfato/metabolismo , Doença de Depósito de Glicogênio Tipo I/complicações , Doença de Depósito de Glicogênio Tipo I/genética , Imunossupressores/farmacologia , Camundongos , Sirolimo/farmacologia
13.
J Hepatol ; 64(2): 370-379, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26462884

RESUMO

BACKGROUND & AIMS: Glucose-6-phosphatase (G6Pase α, G6PC) deficiency, also known as von Gierke's disease or GSDIa, is the most common glycogen storage disorder. It is characterized by a decreased ability of the liver to convert glucose-6-phosphate (G6P) to glucose leading to glycogen and lipid over-accumulation progressing to liver failure and/or hepatomas and carcinomas. Autophagy of intracellular lipid stores (lipophagy) has been shown to stimulate fatty acid ß-oxidation in hepatic cells. Thus, we examined autophagy and its effects on reducing hepatic lipid over-accumulation in several cell culture and animal models of GSDIa. METHODS: Autophagy in G6PC-deficient hepatic cell lines, mice, and dogs was measured by Western blotting for key autophagy markers. Pro-autophagic Unc51-like kinase 1 (ULK1/ATG1) was overexpressed in G6PC-deficient hepatic cells, and lipid clearance and oxidative phosphorylation measured. G6PC(-/-) mice and GSDIa dogs were treated with rapamycin and assessed for liver function. RESULTS: Autophagy was impaired in the cell culture, mouse, and canine models of GSDIa. Stimulation of the anti-autophagic mTOR, and inhibition of the pro-autophagic AMPK pathways occurred both in vitro and in vivo. Induction of autophagy by ULK1/ATG1 overexpression decreased lipid accumulation and increased oxidative phosphorylation in G6PC-deficient hepatic cells. Rapamycin treatment induced autophagy and decreased hepatic triglyceride and glycogen content in G6PC(-/-) mice, as well as reduced liver size and improved circulating markers of liver damage in GSDIa dogs. CONCLUSIONS: Autophagy is impaired in GSDIa. Pharmacological induction of autophagy corrects hepatic lipid over-accumulation and may represent a new therapeutic strategy for GSDIa.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Autofagia , Doença de Depósito de Glicogênio Tipo I/metabolismo , Hepatócitos/metabolismo , Fígado/patologia , Animais , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Cães , Glucose-6-Fosfatase/metabolismo , Imunossupressores/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Tamanho do Órgão , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Triglicerídeos/metabolismo
14.
Biochem Biophys Res Commun ; 480(3): 461-467, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27773823

RESUMO

Short-chain fatty acids (SCFAs) are gut microbial fermentation products derived from dietary fiber sources. Although depletion of gut microflora has been linked to the development of liver disease, the direct effects of SCFAs on intracellular hepatic processes are not well understood. In this study, we demonstrated that the SCFAs, propionate and butyrate, regulated autophagic flux in hepatic cells in a cell-autonomous manner. Induction of autophagy by SCFAs required PPARγ stimulation of Uncoupling Protein 2 (UCP2) expression that was associated with reduced intracellular ATP levels and activation of PRKAA1/AMPK (protein kinase, AMP-activated, alpha 1 catalytic subunit). In addition, elimination of gut flora by chronic antibiotic treatment diminished basal hepatic autophagy in mice suggesting that gut microbiota can regulate hepatic autophagy. These findings provide novel insights into the interplay between diet, gut microbiota, short chain fatty acids, and hepatic autophagic signaling.


Assuntos
Autofagia/fisiologia , Microbioma Gastrointestinal/fisiologia , Hepatócitos/citologia , Hepatócitos/metabolismo , Proteína Desacopladora 2/metabolismo , Animais , Butiratos/metabolismo , Linhagem Celular , Células Cultivadas , Ácidos Graxos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Propionatos/metabolismo
15.
Biochem Biophys Res Commun ; 479(3): 476-481, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27651333

RESUMO

Non-alcoholic steatohepatitis (NASH) is one of the most common causes of liver failure worldwide. It is characterized by excess fat accumulation, inflammation, and increased lipotoxicity in hepatocytes. Currently, there are limited treatment options for NASH due to lack of understanding of its molecular etiology. In the present study, we demonstrate that the expression of fat mass and obesity associated gene (FTO) is significantly increased in the livers of NASH patients and in a rodent model of NASH. Furthermore, using human hepatic cells, we show that genetic silencing of FTO protects against palmitate-induced oxidative stress, mitochondrial dysfunction, ER stress, and apoptosis in vitro. Taken together, our results show that FTO may have a deleterious role in hepatic cells during lipotoxic conditions, and strongly suggest that up-regulation of FTO may contribute to the increased liver damage in NASH.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Inativação Gênica , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo , Animais , Apoptose , Sobrevivência Celular , Ceramidas/química , Estresse do Retículo Endoplasmático , Regulação da Expressão Gênica , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Imuno-Histoquímica , Inflamação , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/metabolismo , Obesidade/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Consumo de Oxigênio , Ácido Palmítico/farmacologia
17.
Hepatology ; 59(4): 1366-80, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23929677

RESUMO

UNLABELLED: Caffeine is one of the world's most consumed drugs. Recently, several studies showed that its consumption is associated with lower risk for nonalcoholic fatty liver disease (NAFLD), an obesity-related condition that recently has become the major cause of liver disease worldwide. Although caffeine is known to stimulate hepatic fat oxidation, its mechanism of action on lipid metabolism is still not clear. Here, we show that caffeine surprisingly is a potent stimulator of hepatic autophagic flux. Using genetic, pharmacological, and metabolomic approaches, we demonstrate that caffeine reduces intrahepatic lipid content and stimulates ß-oxidation in hepatic cells and liver by an autophagy-lysosomal pathway. Furthermore, caffeine-induced autophagy involved down-regulation of mammalian target of rapamycin signaling and alteration in hepatic amino acids and sphingolipid levels. In mice fed a high-fat diet, caffeine markedly reduces hepatosteatosis and concomitantly increases autophagy and lipid uptake in lysosomes. CONCLUSION: These results provide novel insight into caffeine's lipolytic actions through autophagy in mammalian liver and its potential beneficial effects in NAFLD.


Assuntos
Autofagia/efeitos dos fármacos , Cafeína/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Lisossomos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Autofagia/fisiologia , Cafeína/uso terapêutico , Linhagem Celular Tumoral , Dieta Hiperlipídica/efeitos adversos , Regulação para Baixo/efeitos dos fármacos , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/metabolismo , Fígado Gorduroso/prevenção & controle , Células Hep G2 , Humanos , Técnicas In Vitro , Lipólise/efeitos dos fármacos , Lipólise/fisiologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Oxirredução/efeitos dos fármacos , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo
18.
Biochem Biophys Res Commun ; 447(4): 569-73, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24735537

RESUMO

Insulin and glucagon signaling in the liver are major contributors to glucose homeostasis. Patients with Type 1 and Type 2 diabetes have impaired glycemic control due, in part, to dysregulation of the opposing actions of these hormones. While hyperglucagonemia is a common feature in diabetes, its precise role in insulin resistance is not well understood. Recently, metformin, an AMPK activator, was shown to regulate hepatic glucose output via inhibition of glucagon-induced cAMP/PKA signaling; however, the mechanism for how PKA inhibition leads to AMPK activation in human hepatic cells is not known. Here we show that glucagon impairs insulin-mediated AKT phosphorylation in human hepatic cell line Huh7. This impairment of AKT activation by glucagon is due to PKA-mediated inhibition of AMPK via increased inhibitory phosphorylation of AMPK(Ser173) and reduced activating phosphorylation of AMPK(Thr172). In contrast, metformin decreases PKA activity, leading to decreased pAMPK(Ser173) and increased pAMPK(Thr172). These data support a novel mechanism involving PKA-dependent AMPK phosphorylation that provides new insight into how glucagon and metformin modulate hepatic insulin resistance.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Glucagon/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Metformina/farmacologia , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/genética , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Resistência à Insulina/fisiologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos
19.
Liver Res ; 8(1): 34-45, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38544909

RESUMO

The onset of metabolic dysfunction-associated steatohepatitis (MASH) or non-alcoholic steatohepatitis (NASH) represents a tipping point leading to liver injury and subsequent hepatic complications in the natural progression of what is now termed metabolic dysfunction-associated steatotic liver diseases (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD). With no pharmacological treatment currently available for MASH/NASH, the race is on to develop drugs targeting multiple facets of hepatic metabolism, inflammation, and pro-fibrotic events, which are major drivers of MASH. Nuclear receptors (NRs) regulate genomic transcription upon binding to lipophilic ligands and govern multiple aspects of liver metabolism and inflammation. Ligands of NRs may include hormones, lipids, bile acids, and synthetic ligands, which upon binding to NRs regulate the transcriptional activities of target genes. NR ligands are presently the most promising drug candidates expected to receive approval from the United States Food and Drug Administration as a pharmacological treatment for MASH. This review aims to cover the current understanding of NRs, including nuclear hormone receptors, non-steroid hormone receptors, circadian NRs, and orphan NRs, which are currently undergoing clinical trials for MASH treatment, along with NRs that have shown promising results in preclinical studies.

20.
Nat Metab ; 6(4): 639-650, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38671149

RESUMO

Thyroid hormones (THs) are key hormones that regulate development and metabolism in mammals. In man, the major target tissues for TH action are the brain, liver, muscle, heart, and adipose tissue. Defects in TH synthesis, transport, metabolism, and nuclear action have been associated with genetic and endocrine diseases in man. Over the past few years, there has been renewed interest in TH action and the therapeutic potential of THs and thyromimetics to treat several metabolic disorders such as hypercholesterolemia, dyslipidaemia, non-alcoholic fatty liver disease (NAFLD), and TH transporter defects. Recent advances in the development of tissue and TH receptor isoform-targeted thyromimetics have kindled new hope for translating our fundamental understanding of TH action into an effective therapy. This review provides a concise overview of the historical development of our understanding of TH action, its physiological and pathophysiological effects on metabolism, and future therapeutic applications to treat metabolic dysfunction.


Assuntos
Hormônios Tireóideos , Humanos , Hormônios Tireóideos/metabolismo , Animais , Doenças Metabólicas/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA