Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39000409

RESUMO

Cardiac fibrosis is a severe outcome of Chagas disease (CD), caused by the protozoan Trypanosoma cruzi. Clinical evidence revealed a correlation between fibrosis levels with impaired cardiac performance in CD patients. Therefore, we sought to analyze the effect of inhibitors of TGF-ß (pirfenidone), p38-MAPK (losmapimod) and c-Jun (SP600125) on the modulation of collagen deposition in cardiac fibroblasts (CF) and in vivo models of T. cruzi chronic infection. Sirius Red/Fast Green dye was used to quantify both collagen expression and total protein amount, assessing cytotoxicity. The compounds were also used to treat C57/Bl6 mice chronically infected with T. cruzi, Brazil strain. We identified an anti-fibrotic effect in vitro for pirfenidone (TGF-ß inhibitor, IC50 114.3 µM), losmapimod (p38 inhibitor, IC50 17.6 µM) and SP600125 (c-Jun inhibitor, IC50 3.9 µM). This effect was independent of CF proliferation since these compounds do not affect T. cruzi-induced host cell multiplication as measured by BrdU incorporation. Assays of chronic infection of mice with T. cruzi have shown a reduction in heart collagen by pirfenidone. These results propose a novel approach to fibrosis therapy in CD, with the prospect of repurposing pirfenidone to prevent the onset of ECM accumulation in the hearts of the patients.


Assuntos
Cardiomiopatia Chagásica , Fibrose , Camundongos Endogâmicos C57BL , Piridonas , Animais , Piridonas/farmacologia , Piridonas/uso terapêutico , Cardiomiopatia Chagásica/tratamento farmacológico , Cardiomiopatia Chagásica/parasitologia , Cardiomiopatia Chagásica/metabolismo , Cardiomiopatia Chagásica/patologia , Camundongos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/parasitologia , Miocárdio/patologia , Miocárdio/metabolismo , Colágeno/metabolismo , Trypanosoma cruzi/efeitos dos fármacos , Humanos , Doença Crônica , Fator de Crescimento Transformador beta/metabolismo , Modelos Animais de Doenças , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Masculino , Antracenos
2.
J Chem Inf Model ; 62(24): 6553-6573, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-35960688

RESUMO

The worldwide COVID-19 pandemic caused by the coronavirus SARS-CoV-2 urgently demands novel direct antiviral treatments. The main protease (Mpro) and papain-like protease (PLpro) are attractive drug targets among coronaviruses due to their essential role in processing the polyproteins translated from the viral RNA. In this study, we virtually screened 688 naphthoquinoidal compounds and derivatives against Mpro of SARS-CoV-2. Twenty-four derivatives were selected and evaluated in biochemical assays against Mpro using a novel fluorogenic substrate. In parallel, these compounds were also assayed with SARS-CoV-2 PLpro. Four compounds inhibited Mpro with half-maximal inhibitory concentration (IC50) values between 0.41 µM and 9.0 µM. In addition, three compounds inhibited PLpro with IC50 ranging from 1.9 µM to 3.3 µM. To verify the specificity of Mpro and PLpro inhibitors, our experiments included an assessment of common causes of false positives such as aggregation, high compound fluorescence, and inhibition by enzyme oxidation. Altogether, we confirmed novel classes of specific Mpro and PLpro inhibitors. Molecular dynamics simulations suggest stable binding modes for Mpro inhibitors with frequent interactions with residues in the S1 and S2 pockets of the active site. For two PLpro inhibitors, interactions occur in the S3 and S4 pockets. In summary, our structure-based computational and biochemical approach identified novel naphthoquinonal scaffolds that can be further explored as SARS-CoV-2 antivirals.


Assuntos
Antivirais , Proteases 3C de Coronavírus , Proteases Semelhantes à Papaína de Coronavírus , Naftoquinonas , Inibidores de Proteases , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Antivirais/química , COVID-19 , Simulação de Acoplamento Molecular , Naftoquinonas/química , Naftoquinonas/farmacologia , Papaína , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores
3.
J Chem Inf Model ; 62(24): 6825-6843, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36239304

RESUMO

The Zika virus (ZIKV) is a neurotropic arbovirus considered a global threat to public health. Although there have been several efforts in drug discovery projects for ZIKV in recent years, there are still no antiviral drugs approved to date. Here, we describe the results of a global collaborative crowdsourced open science project, the OpenZika project, from IBM's World Community Grid (WCG), which integrates different computational and experimental strategies for advancing a drug candidate for ZIKV. Initially, molecular docking protocols were developed to identify potential inhibitors of ZIKV NS5 RNA-dependent RNA polymerase (NS5 RdRp), NS3 protease (NS2B-NS3pro), and NS3 helicase (NS3hel). Then, a machine learning (ML) model was built to distinguish active vs inactive compounds for the cytoprotective effect against ZIKV infection. We performed three independent target-based virtual screening campaigns (NS5 RdRp, NS2B-NS3pro, and NS3hel), followed by predictions by the ML model and other filters, and prioritized a total of 61 compounds for further testing in enzymatic and phenotypic assays. This yielded five non-nucleoside compounds which showed inhibitory activity against ZIKV NS5 RdRp in enzymatic assays (IC50 range from 0.61 to 17 µM). Two compounds thermally destabilized NS3hel and showed binding affinity in the micromolar range (Kd range from 9 to 35 µM). Moreover, the compounds LabMol-301 inhibited both NS5 RdRp and NS2B-NS3pro (IC50 of 0.8 and 7.4 µM, respectively) and LabMol-212 thermally destabilized the ZIKV NS3hel (Kd of 35 µM). Both also protected cells from death induced by ZIKV infection in in vitro cell-based assays. However, while eight compounds (including LabMol-301 and LabMol-212) showed a cytoprotective effect and prevented ZIKV-induced cell death, agreeing with our ML model for prediction of this cytoprotective effect, no compound showed a direct antiviral effect against ZIKV. Thus, the new scaffolds discovered here are promising hits for future structural optimization and for advancing the discovery of further drug candidates for ZIKV. Furthermore, this work has demonstrated the importance of the integration of computational and experimental approaches, as well as the potential of large-scale collaborative networks to advance drug discovery projects for neglected diseases and emerging viruses, despite the lack of available direct antiviral activity and cytoprotective effect data, that reflects on the assertiveness of the computational predictions. The importance of these efforts rests with the need to be prepared for future viral epidemic and pandemic outbreaks.


Assuntos
Antivirais , Inibidores de Proteases , Zika virus , Humanos , Antivirais/farmacologia , Antivirais/química , Simulação de Acoplamento Molecular , Peptídeo Hidrolases , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , RNA Polimerase Dependente de RNA/metabolismo , Proteínas não Estruturais Virais/química , Zika virus/efeitos dos fármacos , Zika virus/enzimologia , Infecção por Zika virus/tratamento farmacológico
4.
J Chem Inf Model ; 61(9): 4224-4235, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34387990

RESUMO

With the rapidly evolving SARS-CoV-2 variants of concern, there is an urgent need for the discovery of further treatments for the coronavirus disease (COVID-19). Drug repurposing is one of the most rapid strategies for addressing this need, and numerous compounds have already been selected for in vitro testing by several groups. These have led to a growing database of molecules with in vitro activity against the virus. Machine learning models can assist drug discovery through prediction of the best compounds based on previously published data. Herein, we have implemented several machine learning methods to develop predictive models from recent SARS-CoV-2 in vitro inhibition data and used them to prioritize additional FDA-approved compounds for in vitro testing selected from our in-house compound library. From the compounds predicted with a Bayesian machine learning model, lumefantrine, an antimalarial was selected for testing and showed limited antiviral activity in cell-based assays while demonstrating binding (Kd 259 nM) to the spike protein using microscale thermophoresis. Several other compounds which we prioritized have since been tested by others and were also found to be active in vitro. This combined machine learning and in vitro testing approach can be expanded to virtually screen available molecules with predicted activity against SARS-CoV-2 reference WIV04 strain and circulating variants of concern. In the process of this work, we have created multiple iterations of machine learning models that can be used as a prioritization tool for SARS-CoV-2 antiviral drug discovery programs. The very latest model for SARS-CoV-2 with over 500 compounds is now freely available at www.assaycentral.org.


Assuntos
COVID-19 , SARS-CoV-2 , Teorema de Bayes , Humanos , Aprendizado de Máquina , Simulação de Acoplamento Molecular
5.
Molecules ; 25(7)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244512

RESUMO

Marine Cyanobacteria (blue-green algae) have been shown to possess an enormous potential to produce structurally diverse natural products that exhibit a broad spectrum of potent biological activities, including cytotoxic, antifungal, antiparasitic, antiviral, and antibacterial activities. Here, we report the isolation and structure determination of palstimolide A, a complex polyhydroxy macrolide with a 40-membered ring that was isolated from a tropical marine cyanobacterium collected at Palmyra Atoll. NMR-guided fractionation in combination with MS2-based molecular networking and isolation via HPLC yielded 0.7 mg of the pure compound. The small quantity isolated along with the presence of significant signal degeneracy in both the 1H and 13C-NMR spectra complicated the structure elucidation of palstimolide A. Various NMR experiments and solvent systems were employed, including the LRHSQMBC experiment that allows the detection of long-range 1H-13C correlation data across 4-, 5-, and even 6-bonds. This expanded NMR data set enabled the elucidation of the palstimolide's planar structure, which is characterized by several 1,5-disposed hydroxy groups as well as a tert-butyl group. The compound showed potent antimalarial activity with an IC50 of 223 nM as well as interesting anti-leishmanial activity with an IC50 of 4.67 µM.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Macrolídeos/química , Macrolídeos/farmacologia , Organismos Aquáticos/química , Cianobactérias/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade
6.
Artigo em Inglês | MEDLINE | ID: mdl-30061280

RESUMO

Zika virus (ZIKV) has been linked to the development of microcephaly in newborns, as well as Guillain-Barré syndrome. There are currently no drugs available to treat ZIKV infection, and accordingly, there is an unmet medical need for the discovery of new therapies. High-throughput drug screening efforts focusing on indirect readouts of cell viability are prone to a higher frequency of false positives in cases where the virus is viable in the cell but the cytopathic effect (CPE) is reduced or delayed. Here, we describe a fast and label-free phenotypic high-content imaging assay to detect cells affected by the virus-induced CPE using automated imaging and analysis. Protection from the CPE correlates with a decrease in viral antigen production, as observed by immunofluorescence. We trained our assay using a collection of nucleoside analogues with activity against ZIKV; the previously reported antiviral activities of 2'-C-methylribonucleosides and ribavirin against the Zika virus in Vero cells were confirmed using our developed method. To validate the ability of our assay to reveal new anti-ZIKV compounds, we profiled a novel library of 24 natural product derivatives and found compound 1 to be an inhibitor of the ZIKV-induced cytopathic effect; the activity of the compound was confirmed in human fetal neural stem cells (NSCs). The described technique can be easily leveraged as a primary screening assay for profiling of the activities of large compound libraries against ZIKV and can be expanded to other ZIKV strains and other cell lines displaying morphological changes upon ZIKV infection.


Assuntos
Antivirais/farmacologia , Zika virus/efeitos dos fármacos , Animais , Antivirais/química , Chlorocebus aethiops , Espectroscopia de Ressonância Magnética , Células Vero , Infecção por Zika virus/virologia
7.
Nat Commun ; 15(1): 937, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297033

RESUMO

Malaria poses an enormous threat to human health. With ever increasing resistance to currently deployed drugs, breakthrough compounds with novel mechanisms of action are urgently needed. Here, we explore pyrimidine-based sulfonamides as a new low molecular weight inhibitor class with drug-like physical parameters and a synthetically accessible scaffold. We show that the exemplar, OSM-S-106, has potent activity against parasite cultures, low mammalian cell toxicity and low propensity for resistance development. In vitro evolution of resistance using a slow ramp-up approach pointed to the Plasmodium falciparum cytoplasmic asparaginyl-tRNA synthetase (PfAsnRS) as the target, consistent with our finding that OSM-S-106 inhibits protein translation and activates the amino acid starvation response. Targeted mass spectrometry confirms that OSM-S-106 is a pro-inhibitor and that inhibition of PfAsnRS occurs via enzyme-mediated production of an Asn-OSM-S-106 adduct. Human AsnRS is much less susceptible to this reaction hijacking mechanism. X-ray crystallographic studies of human AsnRS in complex with inhibitor adducts and docking of pro-inhibitors into a model of Asn-tRNA-bound PfAsnRS provide insights into the structure-activity relationship and the selectivity mechanism.


Assuntos
Antimaláricos , Aspartato-tRNA Ligase , Animais , Humanos , Plasmodium falciparum/genética , Asparagina/metabolismo , Aspartato-tRNA Ligase/genética , Aminoacil-RNA de Transferência/metabolismo , Antimaláricos/farmacologia , Mamíferos/genética
9.
Chem Sci ; 14(3): 711-720, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36741526

RESUMO

Infections of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have triggered a global pandemic with millions of deaths worldwide. Herein, the synthesis of functionalized Re(i) tricarbonyl complexes as inhibitors of the SARS-CoV-2 main protease, also referred to as the 3-chymotrypsin-like protease (3CLpro), is presented. The metal complexes were found to inhibit the activity of the enzyme with IC50 values in the low micromolar range. Mass spectrometry revealed that the metal complexes formed a coordinate covalent bond with the enzyme. Chiral separation of the enantiomers of the lead compound showed that one enantiomer was significantly more active than the other, consistent with specific binding and much like that observed for conventional organic small molecule inhibitors and druglike compounds. Evaluation of the lead compound against SARS-CoV-2 in a cell-based infection assay confirmed enantiospecific inhibition against the virus. This study represents a significant advancement in the use of metal complexes as coordinate covalent inhibitors of enzymes, as well as a novel starting point for the development of novel SARS-CoV-2 inhibitors.

10.
Nat Rev Drug Discov ; 22(10): 807-826, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37652975

RESUMO

Recent antimalarial drug discovery has been a race to produce new medicines that overcome emerging drug resistance, whilst considering safety and improving dosing convenience. Discovery efforts have yielded a variety of new molecules, many with novel modes of action, and the most advanced are in late-stage clinical development. These discoveries have led to a deeper understanding of how antimalarial drugs act, the identification of a new generation of drug targets, and multiple structure-based chemistry initiatives. The limited pool of funding means it is vital to prioritize new drug candidates. They should exhibit high potency, a low propensity for resistance, a pharmacokinetic profile that favours infrequent dosing, low cost, preclinical results that demonstrate safety and tolerability in women and infants, and preferably the ability to block Plasmodium transmission to Anopheles mosquito vectors. In this Review, we describe the approaches that have been successful, progress in preclinical and clinical development, and existing challenges. We illustrate how antimalarial drug discovery can serve as a model for drug discovery in diseases of poverty.


Assuntos
Antimaláricos , Plasmodium , Animais , Feminino , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Resistência a Medicamentos , Descoberta de Drogas/métodos
11.
Artigo em Inglês | MEDLINE | ID: mdl-36818551

RESUMO

Introduction: Leishmaniasis is a parasitic disease that affects more than 1 million people worldwide annually, predominantly in resource-limited settings. The challenge in compound development is to exhibit potent activity against the intracellular stage of the parasite (the stage present in the mammalian host) without harming the infected host cells. We have identified a compound series (pyrazolopyrrolidinones) active against the intracellular parasites of Leishmania donovani and L. major; the causative agents of visceral and cutaneous leishmaniasis in the Old World, respectively. Methods: In this study, we performed medicinal chemistry on a newly discovered antileishmanial chemotype, with over 100 analogs tested. Studies included assessments of antileishmanial potency, toxicity towards host cells, and in vitro ADME screening of key drug properties. Results and discussion: Members of the series showed high potency against the deadliest form, visceral leishmaniasis (approximate EC50 ≥ 0.01 µM without harming the host macrophage up to 10.0 µM). In comparison, the most efficient monotherapy treatment for visceral leishmaniasis is amphotericin B, which presents similar activity in the same assay (EC50 = 0.2 µM) while being cytotoxic to the host cell at 5.0 µM. Continued development of this compound series with the Discovery Partnership with Academia (DPAc) program at the GlaxoSmithKline Diseases of the Developing World (GSK DDW) laboratories found that the compounds passed all of GSK's criteria to be defined as a potential lead drug series for leishmaniasis. Conclusion: Here, we describe preliminary structure-activity relationships for antileishmanial pyrazolopyrrolidinones, and our progress towards the identification of candidates for future in vivo assays in models of visceral and cutaneous leishmaniasis.

12.
Future Med Chem ; 15(11): 959-985, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37435731

RESUMO

Aim: Discovery of novel SARS-CoV-2 main protease (Mpro) inhibitors using a structure-based drug discovery strategy. Materials & methods: Virtual screening employing covalent and noncovalent docking was performed to discover Mpro inhibitors, which were subsequently evaluated in biochemical and cellular assays. Results: 91 virtual hits were selected for biochemical assays, and four were confirmed as reversible inhibitors of SARS CoV-2 Mpro with IC50 values of 0.4-3 µM. They were also shown to inhibit SARS-CoV-1 Mpro and human cathepsin L. Molecular dynamics simulations indicated the stability of the Mpro inhibitor complexes and the interaction of ligands at the subsites. Conclusion: This approach led to the discovery of novel thiosemicarbazones as potent SARS-CoV-2 Mpro inhibitors.


Assuntos
COVID-19 , Tiossemicarbazonas , Humanos , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/química , Tiossemicarbazonas/farmacologia , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Proteínas não Estruturais Virais
13.
Res Sq ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37546892

RESUMO

Malaria poses an enormous threat to human health. With ever increasing resistance to currently deployed drugs, breakthrough compounds with novel mechanisms of action are urgently needed. Here, we explore pyrimidine-based sulfonamides as a new low molecular weight inhibitor class with drug-like physical parameters and a synthetically accessible scaffold. We show that the exemplar, OSM-S-106, has potent activity against parasite cultures, low mammalian cell toxicity and low propensity for resistance development. In vitro evolution of resistance using a slow ramp-up approach pointed to the Plasmodium falciparum cytoplasmic asparaginyl tRNA synthetase (PfAsnRS) as the target, consistent with our finding that OSM-S-106 inhibits protein translation and activates the amino acid starvation response. Targeted mass spectrometry confirms that OSM-S-106 is a pro-inhibitor and that inhibition of PfAsnRS occurs via enzyme-mediated production of an Asn-OSM-S-106 adduct. Human AsnRS is much less susceptible to this reaction hijacking mechanism. X-ray crystallographic studies of human AsnRS in complex with inhibitor adducts and docking of pro-inhibitors into a model of Asn-tRNA-bound PfAsnRS provide insights into the structure activity relationship and the selectivity mechanism.

14.
ACS Omega ; 7(9): 7675-7682, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35284725

RESUMO

Safe and effective treatments for Chagas disease, a potentially fatal parasitic infection associated with cardiac and gastrointestinal pathology and caused by the kinetoplastid parasite Trypanosoma cruzi, have yet to be developed. Benznidazole and nifurtimox, which are currently the only available drugs against T. cruzi, are associated with severe adverse effects and questionable efficacy in the late stage of the disease. Natural products have proven to be a rich source of new chemotypes for other infectious agents. We utilized a microscopy-based high-throughput phenotypic screen to identify inhibitors of T. cruzi from a library of natural product samples obtained from fungi procured through a Citizen Science Soil Collection Program (https://whatsinyourbackyard.org/) and the Great Lakes (USA) benthic environment. We identified five leucinostatins (A, B, F, NPDG C, and NPDG D) as potent inhibitors of the intracellular amastigote form of T. cruzi. Leucinostatin B also showed in vivo suppression of T. cruzi in a mouse model of Chagas disease. Given prior reports that leucinostatins A and B have antiparasitic activity against the related kinetoplastid Trypanosoma brucei, our findings suggest a potential cross-trypanocidal compound class and provide a platform for the further chemical derivatization of a potent chemical scaffold against T. cruzi.

15.
Cancer Res ; 82(3): 377-390, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34903607

RESUMO

Glioblastoma is the most prevalent primary malignant brain tumor in adults and is characterized by poor prognosis and universal tumor recurrence. Effective glioblastoma treatments are lacking, in part due to somatic mutations and epigenetic reprogramming that alter gene expression and confer drug resistance. To investigate recurrently dysregulated genes in glioblastoma, we interrogated allele-specific expression (ASE), the difference in expression between two alleles of a gene, in glioblastoma stem cells (GSC) derived from 43 patients. A total of 118 genes were found with recurrent ASE preferentially in GSCs compared with normal tissues. These genes were enriched for apoptotic regulators, including schlafen family member 11 (SLFN11). Loss of SLFN11 gene expression was associated with aberrant promoter methylation and conferred resistance to chemotherapy and PARP inhibition. Conversely, low SLFN11 expression rendered GSCs susceptible to the oncolytic flavivirus Zika. This discovery effort based upon ASE revealed novel points of vulnerability in GSCs, suggesting a potential alternative treatment strategy for chemotherapy-resistant glioblastoma. SIGNIFICANCE: Assessing allele-specific expression reveals genes with recurrent cis-regulatory changes that are enriched in glioblastoma stem cells, including SLFN11, which modulates chemotherapy resistance and susceptibility to the oncolytic Zika virus.


Assuntos
Estudos de Associação Genética/métodos , Glioblastoma/genética , Glioblastoma/terapia , Alelos , Linhagem Celular Tumoral , Humanos
16.
Eur J Med Chem ; 244: 114876, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36343429

RESUMO

Chagas disease is a major public health problem caused by Trypanosoma cruzi, with an estimated 6-7 million people infected and 70 million at risk of infection. T. brucei gambiense and T. brucei rhodesiense are two subspecies of related parasites that cause human African trypanosomiasis, a neglected tropical disease with also millions of people at risk of infection. Pharmacotherapy for both diseases suffers from low efficacy, side effects, or drug resistance. Recently, we reported a noncovalent competitive inhibitor of cruzain (IC50 26 µM, Ki 3 µM) and TbrCatL (IC50 50 µM), two cysteine proteases considered promising drug targets for trypanosomiasis. Here, we describe the design and synthesis of derivatives of our lead compound. The new thiosemicarbazone derivatives showed potency in the nanomolar concentration range against the two enzymes, but they were later characterized as aggregators. Nevertheless, the thiosemicarbazone derivatives showed promising antiparasitic activities against T. b. brucei (EC50 13-49.7 µM) and T. cruzi (EC50 0.027-0.59 µM) under in vitro conditions. The most active thiosemicarbazone was 200-fold more potent than the current anti-chagasic drug, benznidazole, and showed a selectivity index of 370 versus myoblast cells. We have identified an excellent candidate for further optimization and in vivo studies.


Assuntos
Doença de Chagas , Tiossemicarbazonas , Tripanossomicidas , Trypanosoma brucei brucei , Trypanosoma cruzi , Humanos , Tripanossomicidas/farmacologia , Tiossemicarbazonas/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Relação Estrutura-Atividade , Doença de Chagas/tratamento farmacológico
17.
Pathogens ; 11(12)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36558759

RESUMO

Metals have been used in medicine since ancient times for the treatment of different ailments with various elements such as iron, gold and arsenic. Metal complexes have also been reported to show antibiotic and antiparasitic activity. In this context, we tested the antiparasitic potential of 10 organotin (IV) derivatives from 4-(4-methoxyphenylamino)-4 oxobutanoic acid (MS26) against seven eukaryotic pathogens of medical importance: Leishmania donovani, Trypanosoma cruzi, Trypanosoma brucei, Entamoeba histolytica, Giardia lamblia, Naegleria fowleri and Schistosoma mansoni. Among the compounds with and without antiparasitic activity, compound MS26Et3 stood out with a 50% effective concentration (EC50) of 0.21 and 0.19 µM against promastigotes and intracellular amastigotes of L. donovani, respectively, 0.24 µM against intracellular amastigotes of T. cruzi, 0.09 µM against T. brucei, 1.4 µM against N. fowleri and impaired adult S. mansoni viability at 1.25 µM. In terms of host/pathogen selectivity, MS26Et3 demonstrated relatively mild cytotoxicity toward host cells with a 50% viability concentration of 4.87 µM against B10R cells (mouse monocyte cell line), 2.79 µM against C2C12 cells (mouse myoblast cell line) and 1.24 µM against HEK923 cells (human embryonic kidney cell line). The selectivity index supports this molecule as a therapeutic starting point for a broad spectrum antiparasitic alternative. Proteomic analysis of host cells infected with L. donovani after exposure to MS26Et3 showed a reduced expression of Rab7, which may affect the fusion of the endosome with the lysosome, and, consequently, impairing the differentiation of L. donovani to the amastigote form. Future studies to investigate the molecular target(s) and mechanism of action of MS26Et3 will support its chemical optimization.

18.
bioRxiv ; 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35018373

RESUMO

The worldwide COVID-19 pandemic caused by the coronavirus SARS-CoV-2 urgently demands novel direct antiviral treatments. The main protease (Mpro) and papain-like protease (PLpro) are attractive drug targets among coronaviruses due to their essential role in processing the polyproteins translated from the viral RNA. In the present work, we virtually screened 688 naphthoquinoidal compounds and derivatives against Mpro of SARS-CoV-2. Twenty-four derivatives were selected and evaluated in biochemical assays against Mpro using a novel fluorogenic substrate. In parallel, these compounds were also assayed with SARS-CoV-2 PLpro. Four compounds inhibited Mpro with half-maximal inhibitory concentration (IC 50 ) values between 0.41 µM and 66 µM. In addition, eight compounds inhibited PLpro with IC 50 ranging from 1.7 µM to 46 µM. Molecular dynamics simulations suggest stable binding modes for Mpro inhibitors with frequent interactions with residues in the S1 and S2 pockets of the active site. For two PLpro inhibitors, interactions occur in the S3 and S4 pockets. In summary, our structure-based computational and biochemical approach identified novel naphthoquinonal scaffolds that can be further explored as SARS-CoV-2 antivirals.

19.
Cancer Discov ; 12(2): 502-521, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34615656

RESUMO

Glioblastoma (GBM) is the most lethal primary brain cancer characterized by therapeutic resistance, which is promoted by GBM stem cells (GSC). Here, we interrogated gene expression and whole-genome CRISPR/Cas9 screening in a large panel of patient-derived GSCs, differentiated GBM cells (DGC), and neural stem cells (NSC) to identify master regulators of GSC stemness, revealing an essential transcription state with increased RNA polymerase II-mediated transcription. The YY1 and transcriptional CDK9 complex was essential for GSC survival and maintenance in vitro and in vivo. YY1 interacted with CDK9 to regulate transcription elongation in GSCs. Genetic or pharmacologic targeting of the YY1-CDK9 complex elicited RNA m6A modification-dependent interferon responses, reduced regulatory T-cell infiltration, and augmented efficacy of immune checkpoint therapy in GBM. Collectively, these results suggest that YY1-CDK9 transcription elongation complex defines a targetable cell state with active transcription, suppressed interferon responses, and immunotherapy resistance in GBM. SIGNIFICANCE: Effective strategies to rewire immunosuppressive microenvironment and enhance immunotherapy response are still lacking in GBM. YY1-driven transcriptional elongation machinery represents a druggable target to activate interferon response and enhance anti-PD-1 response through regulating the m6A modification program, linking epigenetic regulation to immunomodulatory function in GBM.This article is highlighted in the In This Issue feature, p. 275.


Assuntos
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Imunoterapia , Animais , Neoplasias Encefálicas/genética , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/metabolismo , Microambiente Tumoral
20.
Pathogens ; 10(5)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068119

RESUMO

Cutaneous leishmaniasis (CL) is the most common disease form caused by a Leishmania parasite infection and considered a neglected tropical disease (NTD), affecting 700,000 to 1.2 million new cases per year in the world. Leishmania major is one of several different species of the Leishmania genus that can cause CL. Current CL treatments are limited by adverse effects and rising resistance. Studying disease metabolism at the site of infection can provide knowledge of new targets for host-targeted drug development. In this study, tissue samples were collected from mice infected in the ear or footpad with L. major and analyzed by untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS). Significant differences in overall metabolite profiles were noted in the ear at the site of the lesion. Interestingly, lesion-adjacent, macroscopically healthy sites also showed alterations in specific metabolites, including selected glycerophosphocholines (PCs). Host-derived PCs in the lower m/z range (m/z 200-799) showed an increase with infection in the ear at the lesion site, while those in the higher m/z range (m/z 800-899) were decreased with infection at the lesion site. Overall, our results expanded our understanding of the mechanisms of CL pathogenesis through host metabolism and may lead to new curative measures against infection with Leishmania.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA