Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34518213

RESUMO

The most ubiquitous cyanobacteria, Synechococcus, have colonized different marine thermal niches through the evolutionary specialization of lineages adapted to different ranges of temperature seawater. We used the strains of Synechococcus temperature ecotypes to study how light utilization has evolved in the function of temperature. The tropical Synechococcus (clade II) was unable to grow under 16 °C but, at temperatures >25 °C, induced very high growth rates that relied on a strong synthesis of the components of the photosynthetic machinery, leading to a large increase in photosystem cross-section and electron flux. By contrast, the Synechococcus adapted to subpolar habitats (clade I) grew more slowly but was able to cope with temperatures <10 °C. We show that growth at such temperatures was accompanied by a large increase of the photoprotection capacities using the orange carotenoid protein (OCP). Metagenomic analyzes revealed that Synechococcus natural communities show the highest prevalence of the ocp genes in low-temperature niches, whereas most tropical clade II Synechococcus have lost the gene. Moreover, bioinformatic analyzes suggested that the OCP variants of the two cold-adapted Synechococcus clades I and IV have undergone evolutionary convergence through the adaptation of the molecular flexibility. Our study points to an important role of temperature in the evolution of the OCP. We, furthermore, discuss the implications of the different metabolic cost of these physiological strategies on the competitiveness of Synechococcus in a warming ocean. This study can help improve the current hypotheses and models aimed at predicting the changes in ocean carbon fluxes in response to global warming.


Assuntos
Synechococcus/genética , Synechococcus/fisiologia , Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , Proteínas de Bactérias/genética , Temperatura Baixa , Ecossistema , Ecótipo , Luz , Metagenoma/genética , Metagenômica/métodos , Fotossíntese/genética , Fotossíntese/fisiologia , Água do Mar
2.
J Phycol ; 57(3): 831-848, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33316844

RESUMO

Free-living red coralline algae play an important role in the carbon and carbonate cycles of coastal environments. In this study, we examined the physiology of free-living coralline algae-forming maerl beds in the Bay of Brest (Brittany, France), where Lithothamnion corallioides is the dominant maerl (i.e., rhodolith) species. Phymatolithon calcareum and Lithophyllum incrustans are also present (in lower abundances) at a specific site in the bay. We aimed to assess how maerl physiology is affected by seasonality and/or local environmental variations at the inter- and intraspecific levels. Physiological measurements (respiration, photosynthetic, and calcification rates) were performed using incubation chambers in winter and summer to compare (1) the dominant maerl species at three sites and (2) three coexisting maerl species at one site. Comparison of the three coexisting maerl species suggests that L. corallioides is the best adapted to the current environmental conditions in the Bay of Brest, because this species is the most robust to dissolution in the dark in winter and has the highest calcification efficiency in the light. Comparisons of L. corallioides metabolic rates between stations showed that morphological variations within this species are the main factor affecting its photosynthetic and calcification rates. Environmental factors such as freshwater inputs also affect its calcification rates in the dark. In addition to interspecies variation in maerl physiology, there were intraspecific variations associated with direct (water physico-chemistry) or indirect (morphology) local environmental conditions. This study demonstrates the plasticity of maerl physiology in response to environmental changes, which is fundamental for maerl persistence.


Assuntos
Rodófitas , Carbonatos , França , Fotossíntese , Estações do Ano
3.
New Phytol ; 225(6): 2396-2410, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31591719

RESUMO

The wide latitudinal distribution of marine Synechococcus cyanobacteria partly relies on the differentiation of lineages adapted to distinct thermal environments. Membranes are highly thermosensitive cell components, and the ability to modulate their fluidity can be critical for the fitness of an ecotype in a particular thermal niche. We compared the thermophysiology of Synechococcus strains representative of major temperature ecotypes in the field. We measured growth, photosynthetic capacities and membrane lipidome variations. We carried out a metagenomic analysis of stations of the Tara Oceans expedition to describe the latitudinal distribution of the lipid desaturase genes in the oceans. All strains maintained efficient photosynthetic capacities over their different temperature growth ranges. Subpolar and cold temperate strains showed enhanced capacities for lipid monodesaturation at low temperature thanks to an additional, poorly regiospecific Δ9-desaturase. By contrast, tropical and warm temperate strains displayed moderate monodesaturation capacities but high proportions of double unsaturations in response to cold, thanks to regiospecific Δ12-desaturases. The desaturase genes displayed specific distributions directly related to latitudinal variations in ocean surface temperature. This study highlights the critical importance of membrane fluidity modulation by desaturases in the adaptive strategies of Synechococcus cyanobacteria during the colonization of novel thermal niches.


Assuntos
Água do Mar , Synechococcus , Regulação da Temperatura Corporal , Oceanos e Mares , Filogenia , Synechococcus/genética
4.
Environ Microbiol ; 20(2): 612-631, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29124854

RESUMO

The marine cyanobacteria of the genus Synechococcus are important primary producers, displaying a wide latitudinal distribution that is underpinned by diversification into temperature ecotypes. The physiological basis underlying these ecotypes is poorly known. In many organisms, regulation of membrane fluidity is crucial for acclimating to variations in temperature. Here, we reveal the detailed composition of the membrane lipidome of the model strain Synechococcus sp. WH7803 and its response to temperature variation. Unlike freshwater strains, membranes are almost devoid of C18, mainly containing C14 and C16 chains with no more than two unsaturations. In response to cold, we observed a rarely observed process of acyl chain shortening that likely induces membrane thinning, along with specific desaturation activities. Both of these mechanisms likely regulate membrane fluidity, facilitating the maintenance of efficient photosynthetic activity. A comprehensive examination of 53 Synechococcus genomes revealed clade-specific gene sets regulating membrane lipids. In particular, the genes encoding desaturase enzymes, which is a key to the temperature stress response, appeared to be temperature ecotype-specific, with some of them originating from lateral transfers. Our study suggests that regulation of membrane fluidity has been among the important adaptation processes for the colonization of different thermal niches by marine Synechococcus.


Assuntos
Aclimatação , Lipídeos de Membrana/fisiologia , Synechococcus/fisiologia , Adaptação Fisiológica/genética , Temperatura Baixa , Ecótipo , Lipídeos de Membrana/análise , Fotossíntese , Água do Mar , Synechococcus/química , Synechococcus/genética , Temperatura
5.
Photosynth Res ; 138(1): 57-71, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29938315

RESUMO

The extrinsic PsbU and PsbV proteins are known to play a critical role in stabilizing the Mn4CaO5 cluster of the PSII oxygen-evolving complex (OEC). However, most isolates of the marine cyanobacterium Prochlorococcus naturally miss these proteins, even though they have kept the main OEC protein, PsbO. A structural homology model of the PSII of such a natural deletion mutant strain (P. marinus MED4) did not reveal any obvious compensation mechanism for this lack. To assess the physiological consequences of this unusual OEC, we compared oxygen evolution between Prochlorococcus strains missing psbU and psbV (PCC 9511 and SS120) and two marine strains possessing these genes (Prochlorococcus sp. MIT9313 and Synechococcus sp. WH7803). While the low light-adapted strain SS120 exhibited the lowest maximal O2 evolution rates (Pmax per divinyl-chlorophyll a, per cell or per photosystem II) of all four strains, the high light-adapted strain PCC 9511 displayed even higher PChlmax and PPSIImax at high irradiance than Synechococcus sp. WH7803. Furthermore, thermoluminescence glow curves did not show any alteration in the B-band shape or peak position that could be related to the lack of these extrinsic proteins. This suggests an efficient functional adaptation of the OEC in these natural deletion mutants, in which PsbO alone is seemingly sufficient to ensure proper oxygen evolution. Our study also showed that Prochlorococcus strains exhibit negative net O2 evolution rates at the low irradiances encountered in minimum oxygen zones, possibly explaining the very low O2 concentrations measured in these environments, where Prochlorococcus is the dominant oxyphototroph.


Assuntos
Proteínas de Bactérias/fisiologia , Cianobactérias/metabolismo , Oxigênio/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Clorofila/metabolismo , Cianobactérias/genética , Citometria de Fluxo , Genoma Bacteriano , Luz , Modelos Moleculares , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/genética
6.
Proc Natl Acad Sci U S A ; 112(47): 14652-7, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26553998

RESUMO

In large regions of the open ocean, iron is a limiting resource for phytoplankton. The reduction of iron quota and the recycling of internal iron pools are among the diverse strategies that phytoplankton have evolved to allow them to grow under chronically low ambient iron levels. Phytoplankton species also have evolved strategies to cope with sporadic iron supply such as long-term storage of iron in ferritin. In the picophytoplanktonic species Ostreococcus we report evidence from observations both in the field and in laboratory cultures that ferritin and the main iron-binding proteins involved in photosynthesis and nitrate assimilation pathways show opposite diurnal expression patterns, with ferritin being maximally expressed during the night. Biochemical and physiological experiments using a ferritin knock-out line subsequently revealed that this protein plays a central role in the diel regulation of iron uptake and recycling and that this regulation of iron homeostasis is essential for cell survival under iron limitation.


Assuntos
Ritmo Circadiano , Ferritinas/metabolismo , Homeostase , Ferro/metabolismo , Água do Mar/microbiologia , Western Blotting , Precipitação Química , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/genética , Ritmo Circadiano/efeitos da radiação , Ferritinas/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Homeostase/efeitos dos fármacos , Homeostase/genética , Homeostase/efeitos da radiação , Ferro/farmacologia , Proteínas de Ligação ao Ferro/metabolismo , Cinética , Luz , Espectrometria de Massas , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Fitoplâncton/efeitos dos fármacos , Fitoplâncton/genética , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/metabolismo , Transcriptoma/genética
7.
Photosynth Res ; 127(2): 189-99, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26156125

RESUMO

Skeletonema costatum and Phaeodactylum tricornutum are model marine diatoms with differing strategies for non-photochemical dissipation of excess excitation energy within photosystem II (PSII). We showed that S. costatum, with connectivity across the pigment bed serving PSII, and limited capacity for induction of sustained non-photochemical quenching (NPQ), maintained a large ratio of [PSII(Total)]/[PSII(Active)] to buffer against fluctuations in light intensity. In contrast, P. tricornutum, with a larger capacity to induce sustained NPQ, could maintain a lower [PSII(Total)]/[PSII(Active)]. Induction of NPQ was correlated with an active PSII repair cycle in both species, and inhibition of chloroplastic protein synthesis with lincomycin leads to run away over-excitation of remaining PSII(Active), particularly in S. costatum. We discuss these distinctions in relation to the differing capacities, induction and relaxation rates for NPQ, and as strain adaptations to the differential light regimes of their originating habitats. The present work further confirms the important role for the light-dependent fast regulation of photochemistry by NPQ interacting with PSII repair cycle capacity in the ecophysiology of both pennate and centric diatoms.


Assuntos
Diatomáceas/metabolismo , Fotoquímica , Complexo de Proteína do Fotossistema II/metabolismo , Água do Mar , Clorofila/metabolismo , Diatomáceas/efeitos da radiação , Fluorescência , Cinética , Luz
8.
Nucleic Acids Res ; 41(Database issue): D396-401, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23175607

RESUMO

CyanoLyase (http://cyanolyase.genouest.org/) is a manually curated sequence and motif database of phycobilin lyases and related proteins. These enzymes catalyze the covalent ligation of chromophores (phycobilins) to specific binding sites of phycobiliproteins (PBPs). The latter constitute the building bricks of phycobilisomes, the major light-harvesting systems of cyanobacteria and red algae. Phycobilin lyases sequences are poorly annotated in public databases. Sequences included in CyanoLyase were retrieved from all available genomes of these organisms and a few others by similarity searches using biochemically characterized enzyme sequences and then classified into 3 clans and 32 families. Amino acid motifs were computed for each family using Protomata learner. CyanoLyase also includes BLAST and a novel pattern matching tool (Protomatch) that allow users to rapidly retrieve and annotate lyases from any new genome. In addition, it provides phylogenetic analyses of all phycobilin lyases families, describes their function, their presence/absence in all genomes of the database (phyletic profiles) and predicts the chromophorylation of PBPs in each strain. The site also includes a thorough bibliography about phycobilin lyases and genomes included in the database. This resource should be useful to scientists and companies interested in natural or artificial PBPs, which have a number of biotechnological applications, notably as fluorescent markers.


Assuntos
Bases de Dados de Proteínas , Liases/química , Ficobilinas/metabolismo , Ficobiliproteínas/metabolismo , Motivos de Aminoácidos , Cianobactérias/enzimologia , Internet , Liases/classificação , Liases/genética , Liases/fisiologia , Anotação de Sequência Molecular , Rodófitas/enzimologia , Análise de Sequência de Proteína , Software
9.
Curr Biol ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38936366

RESUMO

Dinophysis dinoflagellates are predators of Mesodinium ciliates, from which they retain only the plastids of cryptophyte origin. The absence of nuclear photosynthetic cryptophyte genes in Dinophysis raises intriguing physiological and evolutionary questions regarding the functional dynamics of these temporary kleptoplastids within a foreign cellular environment. In an experimental setup including two light conditions, the comparative analysis with Mesodinium rubrum and the cryptophyte Teleaulax amphioxeia revealed that Dinophysis acuminata possessed a smaller and less dynamic functional photosynthetic antenna for green light, a function performed by phycoerythrin. We showed that the lack of the cryptophyte nucleus prevented the synthesis of the phycoerythrin α subunit, thereby hindering the formation of a complete phycoerythrin in Dinophysis. In particular, biochemical analyses showed that Dinophysis acuminata synthesized a poorly stable, incomplete phycoerythrin composed of chromophorylated ß subunits, with impaired performance. We show that, consequently, a continuous supply of new plastids is crucial for growth and effective photoacclimation in this organism. Transcriptome analyses revealed that all examined strains of Dinophysis spp. have acquired the cryptophyte pebA and pebB genes through horizontal gene transfer, suggesting a potential ability to synthesize the phycobilin pigments bound to the cryptophyte phycoerythrin. By emphasizing that a potential long-term acquisition of the cryptophyte plastid relies on establishing genetic independence for essential functions such as light harvesting, this study highlights the intricate molecular challenges inherent in the enslavement of organelles and the processes involved in the diversification of photosynthetic organisms through endosymbiosis.

10.
Plant Physiol ; 156(4): 1934-54, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21670225

RESUMO

Marine Synechococcus undergo a wide range of environmental stressors, especially high and variable irradiance, which may induce oxidative stress through the generation of reactive oxygen species (ROS). While light and ROS could act synergistically on the impairment of photosynthesis, inducing photodamage and inhibiting photosystem II repair, acclimation to high irradiance is also thought to confer resistance to other stressors. To identify the respective roles of light and ROS in the photoinhibition process and detect a possible light-driven tolerance to oxidative stress, we compared the photophysiological and transcriptomic responses of Synechococcus sp. WH7803 acclimated to low light (LL) or high light (HL) to oxidative stress, induced by hydrogen peroxide (H2O2) or methylviologen. While photosynthetic activity was much more affected in HL than in LL cells, only HL cells were able to recover growth and photosynthesis after the addition of 25 µM H2O2. Depending upon light conditions and H2O2 concentration, the latter oxidizing agent induced photosystem II inactivation through both direct damage to the reaction centers and inhibition of its repair cycle. Although the global transcriptome response appeared similar in LL and HL cells, some processes were specifically induced in HL cells that seemingly helped them withstand oxidative stress, including enhancement of photoprotection and ROS detoxification, repair of ROS-driven damage, and regulation of redox state. Detection of putative LexA binding sites allowed the identification of the putative LexA regulon, which was down-regulated in HL compared with LL cells but up-regulated by oxidative stress under both growth irradiances.


Assuntos
Luz , Estresse Oxidativo/efeitos da radiação , Água do Mar/microbiologia , Synechococcus/metabolismo , Synechococcus/efeitos da radiação , Aclimatação/efeitos dos fármacos , Aclimatação/efeitos da radiação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Análise por Conglomerados , Transporte de Elétrons/efeitos dos fármacos , Transporte de Elétrons/efeitos da radiação , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Genes Bacterianos/genética , Peróxido de Hidrogênio/farmacologia , Dados de Sequência Molecular , Análise Multivariada , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo/efeitos dos fármacos , Paraquat/farmacologia , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema II/metabolismo , Regulon/genética , Synechococcus/efeitos dos fármacos , Synechococcus/genética , Transcriptoma
11.
mSystems ; 7(6): e0065622, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36468851

RESUMO

Marine Synechococcus comprise a numerically and ecologically prominent phytoplankton group, playing a major role in both carbon cycling and trophic networks in all oceanic regions except in the polar oceans. Despite their high abundance in coastal areas, our knowledge of Synechococcus communities in these environments is based on only a few local studies. Here, we use the global metagenome data set of the Ocean Sampling Day (June 21st, 2014) to get a snapshot of the taxonomic composition of coastal Synechococcus communities worldwide, by recruitment on a reference database of 141 picocyanobacterial genomes, representative of the whole Prochlorococcus, Synechococcus, and Cyanobium diversity. This allowed us to unravel drastic community shifts over small to medium scale gradients of environmental factors, in particular along European coasts. The combined analysis of the phylogeography of natural populations and the thermophysiological characterization of eight strains, representative of the four major Synechococcus lineages (clades I to IV), also brought novel insights about the differential niche partitioning of clades I and IV, which most often co-dominate the Synechococcus community in cold and temperate coastal areas. Altogether, this study reveals several important characteristics and specificities of the coastal communities of Synechococcus worldwide. IMPORTANCE Synechococcus is the second most abundant phytoplanktonic organism on Earth, and its wide genetic diversity allowed it to colonize all the oceans except for polar waters, with different clades colonizing distinct oceanic niches. In recent years, the use of global metagenomics data sets has greatly improved our knowledge of "who is where" by describing the distribution of Synechococcus clades or ecotypes in the open ocean. However, little is known about the global distribution of Synechococcus ecotypes in coastal areas, where Synechococcus is often the dominant phytoplanktonic organism. Here, we leverage the global Ocean Sampling Day metagenomics data set to describe Synechococcus community composition in coastal areas worldwide, revealing striking community shifts, in particular along the coasts of Europe. As temperature appears as an important driver of the community composition, we also characterize the thermal preferenda of 8 Synechococcus strains, bringing new insights into the adaptation to temperature of the dominant Synechococcus clades.


Assuntos
Synechococcus , Synechococcus/genética , Filogeografia , Água do Mar/microbiologia , Filogenia , Oceanos e Mares , Fitoplâncton
12.
Environ Microbiol ; 12(1): 95-104, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19735282

RESUMO

Marine phytoplankton show complex community structures and biogeographic distributions, the net results of physiological and ecological trade-offs of species responses to fluctuating, heterogeneous environments. We analysed photosynthesis, responses to variable light and macromolecular allocations across a size panel of marine centric diatoms. The diatoms have strong capacities to withstand and exploit fluctuating light, when compared with picophytoplankton. Within marine diatoms, small species show larger effective cross-sections for photochemistry, and fast metabolic repair of photosystem II after photoinactivation. In contrast, large diatoms show lower susceptibility to photoinactivation, and therefore incur lower costs to endure short-term exposures to high light, especially under conditions that limit metabolic rates. This size scaling of key photophysiological parameters thus helps explain the relative competitive advantages of larger versus smaller species under different environmental regimes, with implications for the function of the biogenic carbon pump. These results provide a mechanistic framework to explain and predict shifts in marine phytoplankton community size structure with changes in surface irradiance and mixed layer depth.


Assuntos
Diatomáceas/metabolismo , Luz , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Fitoplâncton/metabolismo , Clorofila/análise , Diatomáceas/citologia , Diatomáceas/efeitos da radiação , Fitoplâncton/citologia , Fitoplâncton/efeitos da radiação , Especificidade da Espécie , Microbiologia da Água
13.
Front Microbiol ; 11: 600823, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424803

RESUMO

Dinoflagellates are major components of phytoplankton that play critical roles in many microbial food webs, many of them being hosts of countless intracellular parasites. The phototrophic dinoflagellate Scrippsiella acuminata (Dinophyceae) can be infected by the microeukaryotic parasitoids Amoebophrya spp. (Syndiniales), some of which primarily target and digest the host nucleus. Early digestion of the nucleus at the beginning of the infection is expected to greatly impact the host metabolism, inducing the knockout of the organellar machineries that highly depend upon nuclear gene expression, such as the mitochondrial OXPHOS pathway and the plastid photosynthetic carbon fixation. However, previous studies have reported that chloroplasts remain functional in swimming host cells infected by Amoebophrya. We report here a multi-approach monitoring study of S. acuminata organelles over a complete infection cycle by nucleus-targeting Amoebophrya sp. strain A120. Our results show sustained and efficient photosystem II activity as a hallmark of functional chloroplast throughout the infection period despite the complete digestion of the host nucleus. We also report the importance played by light on parasite production, i.e., the amount of host biomass converted to parasite infective propagules. Using a differential gene expression analysis, we observed an apparent increase of all 3 mitochondrial and 9 out of the 11 plastidial genes involved in the electron transport chains (ETC) of the respiration pathways during the first stages of the infection. The longer resilience of organellar genes compared to those encoded by the nucleus suggests that both mitochondria and chloroplasts remain functional throughout most of the infection. This extended organelle functionality, along with higher parasite production under light conditions, suggests that host bioenergetic organelles likely benefit the parasite Amoebophrya sp. A120 and improve its fitness during the intracellular infective stage.

14.
Front Microbiol ; 11: 1707, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793165

RESUMO

Understanding how microorganisms adjust their metabolism to maintain their ability to cope with short-term environmental variations constitutes one of the major current challenges in microbial ecology. Here, the best physiologically characterized marine Synechococcus strain, WH7803, was exposed to modulated light/dark cycles or acclimated to continuous high-light (HL) or low-light (LL), then shifted to various stress conditions, including low (LT) or high temperature (HT), HL and ultraviolet (UV) radiations. Physiological responses were analyzed by measuring time courses of photosystem (PS) II quantum yield, PSII repair rate, pigment ratios and global changes in gene expression. Previously published membrane lipid composition were also used for correlation analyses. These data revealed that cells previously acclimated to HL are better prepared than LL-acclimated cells to sustain an additional light or UV stress, but not a LT stress. Indeed, LT seems to induce a synergic effect with the HL treatment, as previously observed with oxidative stress. While all tested shift conditions induced the downregulation of many photosynthetic genes, notably those encoding PSI, cytochrome b6/f and phycobilisomes, UV stress proved to be more deleterious for PSII than the other treatments, and full recovery of damaged PSII from UV stress seemed to involve the neo-synthesis of a fairly large number of PSII subunits and not just the reassembly of pre-existing subunits after D1 replacement. In contrast, genes involved in glycogen degradation and carotenoid biosynthesis pathways were more particularly upregulated in response to LT. Altogether, these experiments allowed us to identify responses common to all stresses and those more specific to a given stress, thus highlighting genes potentially involved in niche acclimation of a key member of marine ecosystems. Our data also revealed important specific features of the stress responses compared to model freshwater cyanobacteria.

15.
Front Microbiol ; 11: 567431, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042072

RESUMO

Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus are the most abundant photosynthetic organisms on Earth, an ecological success thought to be linked to the differential partitioning of distinct ecotypes into specific ecological niches. However, the underlying processes that governed the diversification of these microorganisms and the appearance of niche-related phenotypic traits are just starting to be elucidated. Here, by comparing 81 genomes, including 34 new Synechococcus, we explored the evolutionary processes that shaped the genomic diversity of picocyanobacteria. Time-calibration of a core-protein tree showed that gene gain/loss occurred at an unexpectedly low rate between the different lineages, with for instance 5.6 genes gained per million years (My) for the major Synechococcus lineage (sub-cluster 5.1), among which only 0.71/My have been fixed in the long term. Gene content comparisons revealed a number of candidates involved in nutrient adaptation, a large proportion of which are located in genomic islands shared between either closely or more distantly related strains, as identified using an original network construction approach. Interestingly, strains representative of the different ecotypes co-occurring in phosphorus-depleted waters (Synechococcus clades III, WPC1, and sub-cluster 5.3) were shown to display different adaptation strategies to this limitation. In contrast, we found few genes potentially involved in adaptation to temperature when comparing cold and warm thermotypes. Indeed, comparison of core protein sequences highlighted variants specific to cold thermotypes, notably involved in carotenoid biosynthesis and the oxidative stress response, revealing that long-term adaptation to thermal niches relies on amino acid substitutions rather than on gene content variation. Altogether, this study not only deciphers the respective roles of gene gains/losses and sequence variation but also uncovers numerous gene candidates likely involved in niche partitioning of two key members of the marine phytoplankton.

16.
Biochim Biophys Acta ; 1777(10): 1344-54, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18694721

RESUMO

Excess light is harmful for photosynthetic organisms. The cyanobacterium Synechocystis PCC 6803 protects itself by dissipating the excess of energy absorbed by the phycobilisome, the water-soluble antenna of Photosystem II, into heat decreasing the excess energy arriving to the reaction centers. Energy dissipation results in a detectable decrease of fluorescence. The soluble Orange Carotenoid Protein (OCP) is essential for this blue-green light induced mechanism. OCP genes appear to be highly conserved among phycobilisome-containing cyanobacteria with few exceptions. Here, we show that only the strains containing a whole OCP gene can perform a blue-light induced photoprotective mechanism under both iron-replete and iron-starvation conditions. In contrast, strains containing only N-terminal and/or C-terminal OCP-like genes, or no OCP-like genes at all lack this light induced photoprotective mechanism and they were more sensitive to high-light illumination. These strains must adopt a different strategy to longer survive under stress conditions. Under iron starvation, the relative decrease of phycobiliproteins was larger in these strains than in the OCP-containing strains, avoiding the appearance of a population of dangerous, functionally disconnected phycobilisomes. The OCP-containing strains protect themselves from high light, notably under conditions inducing the appearance of disconnected phycobilisomes, using the energy dissipation OCP-phycobilisome mechanism.


Assuntos
Proteínas de Bactérias/metabolismo , Cianobactérias/metabolismo , Luz , Anabaena/genética , Anabaena/metabolismo , Proteínas de Bactérias/genética , Cianobactérias/genética , Ferro/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Ficobilissomas/metabolismo , Synechococcus/genética , Synechococcus/metabolismo , Synechocystis/genética , Synechocystis/metabolismo
17.
ISME J ; 13(1): 132-146, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30116039

RESUMO

Photosynthetic picoeukaryotesx in the genus Micromonas show among the widest latitudinal distributions on Earth, experiencing large thermal gradients from poles to tropics. Micromonas comprises at least four different species often found in sympatry. While such ubiquity might suggest a wide thermal niche, the temperature response of the different strains is still unexplored, leaving many questions as for their ecological success over such diverse ecosystems. Using combined experiments and theory, we characterize the thermal response of eleven Micromonas strains belonging to four species. We demonstrate that the variety of specific responses to temperature in the Micromonas genus makes this environmental factor an ideal marker to describe its global distribution and diversity. We then propose a diversity model for the genus Micromonas, which proves to be representative of the whole phytoplankton diversity. This prominent primary producer is therefore a sentinel organism of phytoplankton diversity at the global scale. We use the diversity within Micromonas to anticipate the potential impact of global warming on oceanic phytoplankton. We develop a dynamic, adaptive model and run forecast simulations, exploring a range of adaptation time scales, to probe the likely responses to climate change. Results stress how biodiversity erosion depends on the ability of organisms to adapt rapidly to temperature increase.


Assuntos
Clorófitas/fisiologia , Mudança Climática , Temperatura Alta , Oceanos e Mares , Biodiversidade , Ecossistema , Fotossíntese , Fitoplâncton
18.
Front Microbiol ; 9: 2204, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30283423

RESUMO

Pelagic cyanobacteria are key players in the functioning of aquatic ecosystems, and their viruses (cyanophages) potentially affect the abundance and composition of cyanobacterial communities. Yet, there are few well-described freshwater cyanophages relative to their marine counterparts, and in general, few cyanosiphoviruses (family Siphoviridae) have been characterized, limiting our understanding of the biology and the ecology of this prominent group of viruses. Here, we characterize S-LBS1, a freshwater siphovirus lytic to a phycoerythrin-rich Synechococcus isolate (Strain TCC793). S-LBS1 has a narrow host range, a burst size of ∼400 and a relatively long infecting step before cell lysis occurs. It has a dsDNA 34,641 bp genome with putative genes for structure, DNA packing, lysis, replication, host interactions, DNA repair and metabolism. S-LBS1 is similar in genome size, genome architecture, and gene content, to previously described marine siphoviruses also infecting PE-rich Synechococcus, e.g., S-CBS1 and S-CBS3. However, unlike other Synechococcus phages, S-LBS1 encodes an integrase, suggesting its ability to establish lysogenic relationships with its host. Sequence recruitment from viral metagenomic data showed that S-LBS1-like viruses are diversely present in a wide range of aquatic environments, emphasizing their potential importance in controlling and structuring Synechococcus populations. A comparative analysis with 16 available sequenced cyanosiphoviruses reveals the absence of core genes within the genomes, suggesting high degree of genetic variability in siphoviruses infecting cyanobacteria. It is likely that cyanosiphoviruses have evolved as distinct evolutionary lineages and that adaptive co-evolution occurred between these viruses and their hosts (i.e., Synechococcus, Prochlorococcus, Nodularia, and Acaryochloris), constituting an important driving force for such phage diversification.

19.
Sci Rep ; 8(1): 9142, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29904088

RESUMO

All characterized members of the ubiquitous genus Acaryochloris share the unique property of containing large amounts of chlorophyll (Chl) d, a pigment exhibiting a red absorption maximum strongly shifted towards infrared compared to Chl a. Chl d is the major pigment in these organisms and is notably bound to antenna proteins structurally similar to those of Prochloron, Prochlorothrix and Prochlorococcus, the only three cyanobacteria known so far to contain mono- or divinyl-Chl a and b as major pigments and to lack phycobilisomes. Here, we describe RCC1774, a strain isolated from the foreshore near Roscoff (France). It is phylogenetically related to members of the Acaryochloris genus but completely lacks Chl d. Instead, it possesses monovinyl-Chl a and b at a b/a molar ratio of 0.16, similar to that in Prochloron and Prochlorothrix. It differs from the latter by the presence of phycocyanin and a vestigial allophycocyanin energetically coupled to photosystems. Genome sequencing confirmed the presence of phycobiliprotein and Chl b synthesis genes. Based on its phylogeny, ultrastructural characteristics and unique pigment suite, we describe RCC1774 as a novel species that we name Acaryochloris thomasi. Its very unusual pigment content compared to other Acaryochloris spp. is likely related to its specific lifestyle.


Assuntos
Clorofila A/metabolismo , Clorofila/metabolismo , Cianobactérias/classificação , Cianobactérias/metabolismo , Fitoplâncton/classificação , Fitoplâncton/metabolismo
20.
ISME J ; 11(1): 112-124, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27458784

RESUMO

Marine Synechococcus play a key role in global oceanic primary productivity. Their wide latitudinal distribution has been attributed to the occurrence of lineages adapted to distinct thermal niches, but the physiological and molecular bases of this ecotypic differentiation remain largely unknown. By comparing six strains isolated from different latitudes, we showed that the thermostability of their light-harvesting complexes, called phycobilisomes (PBS), varied according to the average sea surface temperature at strain isolation site. Comparative analyses of thermal unfolding curves of the three phycobiliproteins (PBP) constituting PBS rods suggested that the differences in thermostability observed on whole PBSs relied on the distinct molecular flexibility and stability of their individual components. Phycocyanin was the least thermostable of all rod PBP, constituting a fragility point of the PBS under heat stress. Amino-acid composition analyses and structural homology modeling notably revealed the occurrence of two amino-acid substitutions, which might have a role in the observed differential thermotolerance of this phycobiliprotein among temperature ecotypes. We hypothesize that marine Synechococcus ancestors occurred first in warm niches and that during the colonization of cold, high latitude thermal niches, their descendants have increased the molecular flexibility of PBP to maintain optimal light absorption capacities, this phenomenon likely resulting in a decreased stability of these proteins. This apparent thermoadaptability of marine Synechococcus has most probably contributed to the remarkable ubiquity of these picocyanobacteria in the ocean.


Assuntos
Proteínas de Bactérias/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Água do Mar/microbiologia , Synechococcus/metabolismo , Synechococcus/efeitos da radiação , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Temperatura Alta , Luz , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/genética , Oceanos e Mares , Ficocianina/metabolismo , Filogenia , Estabilidade Proteica/efeitos da radiação , Synechococcus/classificação , Synechococcus/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA