Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol ; 177(1): 285-299, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29523711

RESUMO

Early endosperm development presents a unique system in which to uncover epigenetic regulatory mechanisms because the contributing maternal and paternal genomes possess differential epigenetic modifications. In Arabidopsis (Arabidopsis thaliana), the initiation of endosperm coenocytic growth upon fertilization and the transition to endosperm cellularization are regulated by the FERTILIZATION-INDEPENDENT SEED (FIS)-Polycomb Repressive Complex 2 (PRC2), a putative H3K27 methyltransferase. Here, we address the possible role of the FIS-PRC2 complex in regulating the type I MADS-box gene family, which has been shown previously to regulate early endosperm development. We show that a subclass of type I MADS-box genes (C2 genes) was expressed in distinct domains of the coenocytic endosperm in wild-type seeds. Furthermore, the C2 genes were mostly up-regulated biallelically during the extended coenocytic phase of endosperm development in the FIS-PRC2 mutant background. Using allele-specific expression analysis, we also identified a small subset of C2 genes subjected to FIS-PRC2-dependent maternal or FIS-PRC2-independent paternal imprinting. Our data support a dual role for the FIS-PRC2 complex in the regulation of C2 type I MADS-box genes, as evidenced by a generalized role in the repression of gene expression at both alleles associated with endosperm cellularization and a specialized role in silencing the maternal allele of imprinted genes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Arabidopsis/genética , Endosperma/embriologia , Endosperma/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Complexo Repressor Polycomb 2/metabolismo , Fatores de Transcrição/metabolismo , Região 5'-Flanqueadora/genética , Alelos , Proteínas de Arabidopsis/genética , Regulação para Baixo/genética , Fertilização , Genes de Plantas , Impressão Genômica , Proteínas de Domínio MADS/metabolismo , Óvulo Vegetal/genética , Complexo Repressor Polycomb 2/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética
2.
Plant Cell ; 26(4): 1612-1628, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24737671

RESUMO

In flowering plants, meiocytes develop from subepidermal cells in anthers and ovules. The mechanisms that integrate gene-regulatory processes with meiotic programs during reproductive development remain poorly characterized. Here, we show that Arabidopsis thaliana plants deficient in ACTIN-RELATED PROTEIN6 (ARP6), a subunit of the SWR1 ATP-dependent chromatin-remodeling complex, exhibit defects in prophase I of female meiosis. We found that this meiotic defect is likely due to dysregulated expression of meiotic genes, particularly those involved in meiotic recombination, including DMC1 (DISRUPTED MEIOTIC cDNA1). Analysis of DMC1 expression in arp6 mutant plants indicated that ARP6 inhibits expression of DMC1 in the megasporocyte and surrounding nonsporogeneous ovule cells before meiosis. After cells enter meiosis, however, ARP6 activates DMC1 expression specifically in the megasporocyte even as it continues to inhibit DMC1 expression in the nonsporogenous ovule cells. We further show that deposition of the histone variant H2A.Z, mediated by the SWR1 chromatin-remodeling complex at the DMC1 gene body, requires ARP6. Therefore, ARP6 regulates female meiosis by determining the spatial and temporal patterns of gene expression required for proper meiosis during ovule development.

3.
Proc Natl Acad Sci U S A ; 111(21): 7582-7, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24821765

RESUMO

Endosperm is a filial structure resulting from a second fertilization event in angiosperms. As an absorptive storage organ, endosperm plays an essential role in support of embryo development and seedling germination. The accumulation of carbohydrate and protein storage products in cereal endosperm provides humanity with a major portion of its food, feed, and renewable resources. Little is known regarding the regulatory gene networks controlling endosperm proliferation and differentiation. As a first step toward understanding these networks, we profiled all mRNAs in the maize kernel and endosperm at eight successive stages during the first 12 d after pollination. Analysis of these gene sets identified temporal programs of gene expression, including hundreds of transcription-factor genes. We found a close correlation of the sequentially expressed gene sets with distinct cellular and metabolic programs in distinct compartments of the developing endosperm. The results constitute a preliminary atlas of spatiotemporal patterns of endosperm gene expression in support of future efforts for understanding the underlying mechanisms that control seed yield and quality.


Assuntos
Endosperma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica de Plantas/genética , Zea mays/genética , Biologia Computacional , Perfilação da Expressão Gênica , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Fatores de Tempo , Zea mays/metabolismo
4.
BMC Plant Biol ; 10: 110, 2010 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-20550711

RESUMO

BACKGROUND: In flowering plants, the female gametophyte is typically a seven-celled structure with four cell types: the egg cell, the central cell, the synergid cells, and the antipodal cells. These cells perform essential functions required for double fertilization and early seed development. Differentiation of these distinct cell types likely involves coordinated changes in gene expression regulated by transcription factors. Therefore, understanding female gametophyte cell differentiation and function will require dissection of the gene regulatory networks operating in each of the cell types. These efforts have been hampered because few transcription factor genes expressed in the female gametophyte have been identified. To identify such genes, we undertook a large-scale differential expression screen followed by promoter-fusion analysis to detect transcription-factor genes transcribed in the Arabidopsis female gametophyte. RESULTS: Using quantitative reverse-transcriptase PCR, we analyzed 1,482 Arabidopsis transcription-factor genes and identified 26 genes exhibiting reduced mRNA levels in determinate infertile 1 mutant ovaries, which lack female gametophytes, relative to ovaries containing female gametophytes. Spatial patterns of gene transcription within the mature female gametophyte were identified for 17 transcription-factor genes using promoter-fusion analysis. Of these, ten genes were predominantly expressed in a single cell type of the female gametophyte including the egg cell, central cell and the antipodal cells whereas the remaining seven genes were expressed in two or more cell types. After fertilization, 12 genes were transcriptionally active in the developing embryo and/or endosperm. CONCLUSIONS: We have shown that our quantitative reverse-transcriptase PCR differential-expression screen is sufficiently sensitive to detect transcription-factor genes transcribed in the female gametophyte. Most of the genes identified in this study have not been reported previously as being expressed in the female gametophyte. Therefore, they might represent novel regulators and provide entry points for reverse genetic and molecular approaches to uncover the gene regulatory networks underlying female gametophyte development.


Assuntos
Arabidopsis/genética , Óvulo Vegetal/genética , Fatores de Transcrição/genética , Arabidopsis/crescimento & desenvolvimento , Endosperma/genética , Endosperma/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Genes de Plantas , Mutação , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Regiões Promotoras Genéticas , RNA de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA