Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Virol ; 88(22): 12992-3004, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25165114

RESUMO

UNLABELLED: Identification of CD8(+) cytotoxic T lymphocyte (CTL) epitopes has traditionally relied upon testing of overlapping peptide libraries for their reactivity with T cells in vitro. Here, we pursued deep ligand sequencing (DLS) as an alternative method of directly identifying those ligands that are epitopes presented to CTLs by the class I human leukocyte antigens (HLA) of infected cells. Soluble class I HLA-A*11:01 (sHLA) was gathered from HIV-1 NL4-3-infected human CD4(+) SUP-T1 cells. HLA-A*11:01 harvested from infected cells was immunoaffinity purified and acid boiled to release heavy and light chains from peptide ligands that were then recovered by size-exclusion filtration. The ligands were first fractionated by high-pH high-pressure liquid chromatography and then subjected to separation by nano-liquid chromatography (nano-LC)-mass spectrometry (MS) at low pH. Approximately 10 million ions were selected for sequencing by tandem mass spectrometry (MS/MS). HLA-A*11:01 ligand sequences were determined with PEAKS software and confirmed by comparison to spectra generated from synthetic peptides. DLS identified 42 viral ligands presented by HLA-A*11:01, and 37 of these were previously undetected. These data demonstrate that (i) HIV-1 Gag and Nef are extensively sampled, (ii) ligand length variants are prevalent, particularly within Gag and Nef hot spots where ligand sequences overlap, (iii) noncanonical ligands are T cell reactive, and (iv) HIV-1 ligands are derived from de novo synthesis rather than endocytic sampling. Next-generation immunotherapies must factor these nascent HIV-1 ligand length variants and the finding that CTL-reactive epitopes may be absent during infection of CD4(+) T cells into strategies designed to enhance T cell immunity. IMPORTANCE: HIV-1 epitopes catalogued by the Los Alamos National Laboratory (LANL) have yielded limited success in vaccine trials. Because the HLA of infected cells have not previously been assessed for HIV-1 ligands, the objective here was to directly characterize the viral ligands that mark infected cells. Recovery of HLA-presented peptides from HIV-1-infected CD4(+) T cells and interrogation of the peptide cargo by mass spectrometric DLS show that typical and atypical viral ligands are efficiently presented by HLA and targeted by human CTLs. Nef and Gag ligands dominate the infected cell's antigenic profile, largely due to extensive ligand sampling from select hot spots within these viral proteins. Also, HIV-1 ligands are often longer than expected, and these length variants are quite antigenic. These findings emphasize that an HLA-based view of HIV-1 ligand presentation to CTLs provides previously unrealized information that may enhance the development of immune therapies and vaccines.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Epitopos/análise , HIV-1/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Peptídeos/análise , Proteínas Virais/análise , Cromatografia Líquida , Epitopos/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Espectrometria de Massas , Peptídeos/imunologia , Proteínas Virais/imunologia
2.
PLoS One ; 4(5): e5325, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19415116

RESUMO

CD1 molecules are glycoproteins that present lipid antigens at the cell surface for immunological recognition by specialized populations of T lymphocytes. Prior experimental data suggest a wide variety of lipid species can bind to CD1 molecules, but little is known about the characteristics of cellular ligands that are selected for presentation. Here we have molecularly characterized lipids bound to the human CD1d isoform. Ligands were eluted from secreted CD1d molecules and separated by normal phase HPLC, then characterized by mass spectroscopy. A total of 177 lipid species were molecularly identified, comprising glycerophospholipids and sphingolipids. The glycerophospholipids included common diacylglycerol species, reduced forms known as plasmalogens, lyso-phospholipids (monoacyl species), and cardiolipins (tetraacyl species). The sphingolipids included sphingomyelins and glycosylated forms, such as the ganglioside GM3. These results demonstrate that human CD1d molecules bind a surprising diversity of lipid structures within the secretory pathway, including compounds that have been reported to play roles in cancer, autoimmune diseases, lipid signaling, and cell death.


Assuntos
Antígenos CD1d/metabolismo , Lipídeos/análise , Cromatografia Líquida de Alta Pressão , Glicerofosfolipídeos/análise , Humanos , Espectrometria de Massas , Ligação Proteica , Esfingolipídeos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA